Advertisement

Theoretical Methods and Approximations

  • Weronika Walkosz
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter describes the theoretical approaches and approximations used in standard first principles calculations. First, the Born Oppenheimer approximation is stated. Next, an overview of the basic formulation of density functional theory (DFT) is given, underlying its merits in describing various materials and their properties, but also pointing out the aspects which need further improvements. The Kohn–Sham ansatz, which provides a means of calculating properties of many-body system using independent-particle methods, is presented along with practical schemes for solving the resulting Kohn–Sham equations. Finally, the DFT+U method and its implementation within a pseudopotential-plane wave framework are introduced.

Keywords

Density Functional Theory Local Density Approximation Electronic Wavefunctions Born Oppenheimer Approximation Sham Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hohenberg, P., Kohn, W.: Zur Quantentheorie der Molekeln. Ann. Phys. (Leipzing) 84, 456 (1927)Google Scholar
  2. 2.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)CrossRefGoogle Scholar
  3. 3.
    Kohn, W., Sham, L. J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 ( 1965)CrossRefGoogle Scholar
  4. 4.
    Janak, J.F.: Proof that \({\frac{\partial E}{\partial n_{i}}}=\varepsilon\) in density-functional theory. Phys. Rev. B. 18(12), 7165–7168 (1978)Google Scholar
  5. 5.
    Perdew, J.P., Parr, R.G., Levy, M., Balduz, J.L.: Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49(23), 1691–1694 (1982)CrossRefGoogle Scholar
  6. 6.
    Wigner, E.: On the interaction of electrons in metals.: Phys. Rev. 46(11), 1002–1011 (1934)CrossRefGoogle Scholar
  7. 7.
    Vosko, S.H., Wilk, L., Nusair, M.: Accurate spin-dependent electron liquid correlation energies for local spin-density calculations—a critical analysis. Can. J. Phys. 58, 1200 (1980)CrossRefGoogle Scholar
  8. 8.
    Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45(7), 566–569 (1980)CrossRefGoogle Scholar
  9. 9.
    Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B. 23(10), 5048–5079 (1981)CrossRefGoogle Scholar
  10. 10.
    Harris, J., Jones, R.O.: The surface energy of a bounded electron gas. J. Phys. F Metal Phys. 4, 1170–1186 (1974)CrossRefGoogle Scholar
  11. 11.
    Gunnarsson, O., Lundqvist, B.I.: Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13(10), 4274–4298 (1976)CrossRefGoogle Scholar
  12. 12.
    Langreth, D.C., Perdew, J.P.: Exchange-correlation energy of a metallic surface: wave-vector analysis. Phys. Rev. B. 15(6), 2884–2901 (1977)CrossRefGoogle Scholar
  13. 13.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865–3868 (1996)CrossRefGoogle Scholar
  14. 14.
    Perdew, J.P., Wang, Y.: Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45(23), 13244–13249 (1992)CrossRefGoogle Scholar
  15. 15.
    Chadi, D.J., Cohen, M.L.: Special points in the Brillouin zone. Phys. Rev. B 8(12), 5747–5753 (1973)CrossRefGoogle Scholar
  16. 16.
    Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188–5192 (1976)CrossRefGoogle Scholar
  17. 17.
    Evarestov, R.A., Smirnov, V.P.: Special points of the Brillouin-zone and thier use in the solid-State theory. Phys. Status Solidi B 119, 9–40 (1983)Google Scholar
  18. 18.
    Phillips, J.C.: Energy-band interpolation scheme based on a pseudopotential. Phys. Rev. 112(3), 685–695 (1958)CrossRefGoogle Scholar
  19. 19.
    Yin, M.T., Cohen, M.L.: Theory of ab initio pseudopotential calculations. Phys. Rev. B 25(12), 7403–7412 (1982)CrossRefGoogle Scholar
  20. 20.
    Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994)CrossRefGoogle Scholar
  21. 21.
    Qian, G.X., Martin, R.M., Chadi, D.J.: First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces. Phys. Rev. B 38(11), 7649–7663 (1988)CrossRefGoogle Scholar
  22. 22.
    Mosey, N.J., Carter, E.: Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys. Rev. B 57, 1505–1509 (1998)CrossRefGoogle Scholar
  23. 23.
    Anisimov, V.I., Zaanen, J., Andersen, O.K.: Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44(3), 943–954 (1991)CrossRefGoogle Scholar
  24. 24.
    Anisimov, V.I., Solovyev, I.V., Korotin, M.A., Czyzyk, M.T., Sawatzky, G.A.: Density-functional theory and NiO photoemission spectra. Phys. Rev. B 48(23), 16929–16934 (1993)CrossRefGoogle Scholar
  25. 25.
    Solovyev, I.V., Dederichs, P.H., Anisimov, V.I.: Corrected atomic limit in the local-density approximation and the electronic structure of impurities in Rb. Phys. Rev. B 50(23), 16861–16871 (1994)CrossRefGoogle Scholar
  26. 26.
    Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC  2011

Authors and Affiliations

  1. 1.Argonne National LaboratoryArgonneUSA

Personalised recommendations