Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 764 Accesses

Abstract

The widespread interest in silicon nitride ceramics stems from their desirable physical and mechanical properties in many high temperature and pressure applications [15]. Good resistance to oxidation and corrosive environments, low coefficient of friction and thermal expansion, negligible creep, and high decomposition temperature are some of these important properties. Because of these, silicon nitride (especially its polymorph) is widely used in gas turbines, engine parts, bearings, dental drills and gauges, and cutting tools. In addition, thin films and coatings have been studied in relation to high-speed memory devices [610] and optical waveguide applications [11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, I.W., Becher, P.F., Mitomo, M., Petzow, G., Yen, T.S.: Silicon nitride ceramics scientific and technological advances. Mater. Res. Soc. (MRS Proc.) 287, 147–158 (1993)

    Google Scholar 

  2. Hoffmann, M.J.: Analysis of microstructural development and mechanical properties of \(\hbox{Si}_3\hbox{N}_4\) ceramics. In: Hoffmann, M.J., Petzow G. (eds.) Tailoring of Mechanical Properties of \(\hbox{Si}_3\hbox{N}_4\) Ceramics, pp. 59–72. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  3. Cahn, R.W., Hassen, P., Kramer, J.: Materials Science and Technology, Structure and Properties of Ceramics. Wiley, Weinheim (1994)

    Google Scholar 

  4. Richerson, D.W.: The Magic of Ceramics. The American Ceramics Society, Westerville (2000)

    Google Scholar 

  5. Riley, F.L.: Silicon nitride and related materials. J. Am. Ceram. Soc. 83(2), 245–265 (2000)

    Article  CAS  Google Scholar 

  6. Liu, L., Xu, J.P., Chen, L.L., Lai, P.: A study on the improved programming characteristics of flash memory with \(\hbox{Si}_3\hbox{N}_4/\hbox{SiO}_2\) stacked tunneling dielectric. Microelectron. Reliab. 49, 912–915 (2009)

    Article  CAS  Google Scholar 

  7. Saraf, M., Akhvlediani, R., Edrei, R., Shima, R., Roizin, Y., Hoffman, A.: Low thermal budget \(\hbox{SiO}_2/\hbox{Si}_3\hbox{N}_4/\hbox{SiO}_2\) stacks for advanced SONOS memories. J. Appl. Phys. 102, 054512 (2007)

    Article  Google Scholar 

  8. Berberich, S., Godignon, P., Morvan, E., Fonseca, L., Millan, J., Hartnagel, H.L.: Electrical characterisation of \(\hbox{Si}_3\hbox{N}_4/\hbox{SiO}_2\) double layers on p-type 6H-SiC. Microelectron. Reliab. 40, 833–836 (2000)

    Article  Google Scholar 

  9. Wang, Y.Q., Hwang, W.S., Zhang, G., Yeo, Y.C.: Electrical characteristics of memory devices with a high-\(k\) \(\hbox{HfO}_{2}\) trapping layer and dual \(\hbox{SiO}_2/\hbox{Si}_3\hbox{N}_4\) tunneling layer. IEEE Trans. Electron Devices 54(10), 2699–2705 (2007)

    Article  CAS  Google Scholar 

  10. Santussi, S., Lozzi, L., Passacantando, M., Phani, A.R., Palumbo, E., Bracchitta, G., De Tommasis, R., Alfonsetti, R., Moccia, G.: Properties of stacked dielectric films composed of \(\hbox{SiO}_2/\hbox{Si}_3\hbox{N}_4/\hbox{SiO}_2\) tunneling layer. J. Non-Cryst. Solids 245, 224–231 (1999)

    Article  Google Scholar 

  11. Kazmierczak, A., Dortu, F., Schrevens, O., Giannone, D., Vivien, L., Marris-Morini, D., Bouville, D., Cassan, E., Gylfason, K.B., Sohlstrom, H., Sanchez, B., Griol, A., Hill, D.: Light coupling and distribution for \(\hbox{Si}_3\hbox{N}_4/\hbox{SiO}_2\) integrated mutichannel single-mode sensing system. Opt. Eng. 48(1), 014401 (2009)

    Article  Google Scholar 

  12. Kijima, K., Shirasaki, S.I.: Nitrogen self-diffusion in silicon nitride. J. Chem. Phys. 65(7), 2668–2671 (1976)

    Article  CAS  Google Scholar 

  13. Lange, F.: The sophistication of ceramic science through silicon nitride studies. J. Ceram. Soc. Jpn. 114(11), 873–879 (2006)

    Article  CAS  Google Scholar 

  14. Dutta, S., Buzek, B.: Microstructure, strength, and oxidation of a 10 wt% zyttrite-\(\hbox{Si}_3\hbox{N}_4\) ceramic. J. Am. Ceram. Soc. 67(2), 89–92 (1984)

    Article  CAS  Google Scholar 

  15. Pezzotti, G.: \(\hbox{Si}_3\hbox{N}_4\)/SiC-platelet composite without sintering aids: a candidate for gas turbine engines. J. Am. Ceram. Soc. 76, 1313–1320 (1993)

    Article  CAS  Google Scholar 

  16. Li, H., Komeya, K., Tatami, J., Meguro, T., Chiba, Y., Komatsu, M.: Effect of \(\hbox{HfO}_2\) addition on sintering of \(\hbox{Si}_3\hbox{N}_4\). J. Am. Ceram. Soc. Jpn. 109, 342–346 (2001)

    CAS  Google Scholar 

  17. Campbell, G.H., Rühle, M., Dalgleish, B.J., Evans, A.G.: Whisker toughening: a comparison between aluminum oxide and silicon nitride toughened with silicon carbide. J. Am. Ceram. Soc. Jpn. 73, 521–530 (1990)

    Article  CAS  Google Scholar 

  18. Becher, P.F., Ferber, M.K.: Temperature-dependent viscosity of SiREAl-based classes as a function of N:O and RE:Al ratios (RE = La, Gd, Y, and Lu). J. Am. Ceram. Soc. 87, 1274–1279 (2004)

    Article  CAS  Google Scholar 

  19. Park, H., Kim, H.E., Niihara, K.: Microstructural evolution and mechanical properties of \(\hbox{Si}_3\hbox{N}_4\) with \(\hbox{Yb}_2\hbox{O}_3\) as a sintering additive. J. Am. Ceram. Soc. 80, 750–756 (1995)

    Article  Google Scholar 

  20. Hong, Z.L., Yoshida, H., Ikahara, Y., Sakuma, T., Mishimura, T., Mitomo, M.: The effect of additives on sintering behavior and strength retention in silicon nitride with RE-disilicate. J. Eur. Ceram. Soc. 22, 527–534 (1997)

    Article  Google Scholar 

  21. Guo, S.Q., Hirosaki, N., Yamamoto, Y., Nishimura, T., Mitomo, M.: Strength retention in hot-pressed \(\hbox{Si}_3\hbox{N}_4\) ceramics with \(\hbox{Lu}_2\hbox{O}_3\) additives after oxidation exposure in air at 1500 degrees C. J. Am. Ceram. Soc. 85, 1607–1609 (2002)

    Article  CAS  Google Scholar 

  22. Guo, S.Q., Hirosaki, N., Yamamoto, Y., Nishimura, T., Mitomo, M.: Hot-pressed silicon nitride ceramics with \(\hbox{Lu}_2\hbox{O}_3\) additives: elastic moduli and fracture toughness. J. Eur. Ceram. Soc. 23, 537–545 (2003)

    Article  CAS  Google Scholar 

  23. Satet, R.L., Hoffmann, M.J.: Influence of the rare-earth element on the mechanical properties of RE-Mg-bearing silicon nitride. J. Am. Ceram. Soc. 88(9), 2485–2490 (2005)

    Article  CAS  Google Scholar 

  24. German, R.M.: Liquid Phase Sintering. Plenum Press, New York (1985)

    Google Scholar 

  25. Clarke, D.R.: On the equilibrium thickness of intergranular glass phases in ceramic materials. J. Am. Ceram. Soc. 70(1), 15–22 (1987)

    Article  CAS  Google Scholar 

  26. Kleebe, H.J., Hoffmann, M.J., Rühle, M.: Influence of secondary phase chemistry on grain boundary film thickness in silicon nitride. Zeitschrift fur Metallkunde 83(8), 610–617 (1992)

    CAS  Google Scholar 

  27. Kleebe, H.J., Cinibulk, M.K., Cannon, R.M., Rühle, M.: Statistical analysis of the intergranular film thickness in silicon nitride ceramics. J. Am. Ceram. Soc. 76, 1969 (1993)

    Google Scholar 

  28. Clarke, D.R., Shaw, T.M., Philipse, A.P., Horn, R.G.: Possible electrical double-layer contribution to the equilibrium thickeness of intergranular glass films in polycrystalline ceramics. J. Am. Ceram. Soc. 76, 1201 (1993)

    Google Scholar 

  29. Tanaka, I., Kleebe, H.J., Cinibulk, M.K., Bruley, J., Clarke, D.R., Rühle, M.: Calcium concentration dependence of the intergranular film thickness in silicon nitride. J. Am. Ceram. Soc. 77, 911 (1994)

    Google Scholar 

  30. Wang, C., Pan, X., Hoffmann, M.J., Rühle, M.: Grain boundary films in rare-earth-glass-based silicon nitride. J. Am. Ceram. Soc. 79, 788 (1996)

    Google Scholar 

  31. Subramaniam, A., Koch, C.T., Cannon, R.M., Rühle, M.: Intergranular glassy films: an overview. Mater. Sci. Eng. A 422(1–2), 3–18 (2006)

    Google Scholar 

  32. Sanders, W.A., Miekowski, D.M.: Strength and microstructure of sintered \(\hbox{Si}_3\hbox{N}_4\) with rare-earth-oxide additions. J. Am. Ceram. Soc. 64, 304–309 (1985)

    CAS  Google Scholar 

  33. Sun, E.Y., Becher, P.F., Plucknett, K.P., Hsueh, C.H., Alexander, K.B., Waters, S.B., Hirao, K., Brito, M.E.: Microstructural design of silicon nitride with improved fracture toughness: II, effects of yttria and alumina additives. J. Am. Ceram. Soc. 81, 2831–2840 (1998)

    Article  CAS  Google Scholar 

  34. Satet, R.L., Hoffmann, M.J.: Grain growth anisotropy of \(\beta\)-silicon nitride in rare-earth doped -oxynitride glasses. J. Eur. Ceram. Soc. 24, 3437–3445 (2004)

    Article  CAS  Google Scholar 

  35. Choi, D.J., Scott, W.D.: Devitrification and delayed crazing of SiO\(_2\) on single-crystal silicon and chemically vapor-deposited silicon nitride. J. Am. Ceram. Soc. 70, 269–272 (1987)

    Article  Google Scholar 

  36. Part, J.Y., Kim, J.R., Kim, C.H.: Effects of free silicon on the \(\alpha\) to \(\beta\) phase transformation in silicon nitride. J. Am. Ceram. Soc. 70, 240–242 (1987)

    Google Scholar 

  37. Burns, G.T., Chandra, G.: Pyrolysis of preceramic polymers in ammonia: preparation of silicon nitride powders. J. Am. Ceram. Soc. 72, 333–337 (1989)

    Article  CAS  Google Scholar 

  38. Choi, D.J., Fishbach, D.B., Scott, W.D.: Oxidation of chemically-vapor-deposited silicon nitride and single-crystal silicon. J. Am. Ceram. Soc. 72, 1118–1123 (1989)

    Article  CAS  Google Scholar 

  39. Kleebe, H.J., Ziegler, G.: Influence of crystalline secondary phases on the densification behavior of reaction-bonded silicon nitride during postsintering under increased nitrogen pressures. J. Eur. Ceram. Soc. 72, 2314–2317 (1989)

    Article  CAS  Google Scholar 

  40. Tanaka, I., Pezzotti, G., Okamoto, T., Miyamoto, Y., Koizumim, M.: Hot isostatic press sintering and properties of silicon nitride without additives. J. Am. Ceram. Soc. 72, 1656–1660 (1989)

    Article  CAS  Google Scholar 

  41. Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S., Saito, F.: Grain growth during gas-pressure sintering of \(\beta\)-silicon nitride. J. Eur. Ceram. Soc. 73, 2441–2445 (1990)

    Article  CAS  Google Scholar 

  42. Mitomo, M., Uenosono, S.: Microstructural development during gas-pressure sintering of \(\alpha\)-silicon nitride. J. Eur. Ceram. Soc. 75, 103–108 (1992)

    Article  CAS  Google Scholar 

  43. Watari, K., Hirao, K., Toriyama, M., Ishizaki, K.: Effect of grain size on the thermal conductivity of \(\hbox{Si}_3\hbox{N}_4\). J. Am. Ceram. Soc. 82, 777–779 (1999)

    Article  CAS  Google Scholar 

  44. Kitayama, M., Hirao, K., Tsuge, A., Watari, K., Toriyama, M., Kanzaki, S.: Thermal conductivity of beta-Si\(_3\)N\(_4\): II, effect of lattice oxygen. J. Am. Ceram. Soc. 83, 1985–1992 (2000)

    Article  CAS  Google Scholar 

  45. Shen, J.Z., Zhao, Z., Peng, H., Nygren, M.: Formation of tough interlocking microstructures in silicon nitride ceramics by dynamic ripening. Nature (London) 417, 266–269 (2002)

    Article  CAS  Google Scholar 

  46. Cinibulk, M.K., Thomas, G., Johnson, S.M.: Strength and creep behavior of rare-earth disilicate-silicon nitride ceramics. J. Am. Ceram. Soc. 75, 2050–2055 (1992)

    Article  CAS  Google Scholar 

  47. Hoffmann, M.J., Gu, H., Cannon, R.M.: Interfacial engineering for optimized properties II. In: Hall, E.L., Carter, C.B., Briant, C.L. (eds.) MRS Proceedings, p. 65. Pittsburgh, Pennsylvania, Mater. Res. Soc. (2000)

    Google Scholar 

  48. Satet, R.L., Hoffmann, M.J., Cannon, R.M.: Experimental evidence of the impact of rare-earth elements on particle growth and mechanical behaviour of silicon nitride. Mater. Sci. Eng. A 422, 66–76 (2006)

    Article  Google Scholar 

  49. Tanaka, I., Pezzotti, G., Matsushuta, K.I., Miyamoto, Y., Okamoto, T.: Impurity-enhanced intergranular cavity formation in silicon nitride at high temperatures. J. Am. Ceram. Soc. 73, 752–759 (1990)

    Google Scholar 

  50. Ohji, T., Hirao, K., Kanzaki, S.: Fracture resistance behavior of highly anisotropic silicon nitride. J. Am. Ceram. Soc. 78, 3125–3128 (1995)

    Article  CAS  Google Scholar 

  51. Becher, P.F., Sun, E.Y., Plucknett, K.P., Alexander, K.B., Hsueh, C.H., Lin, H.T., Waters, S.B., Westmoreland, C.G., Kang, E.S., Hirao, K., Brito, M.E.: Microstructural design of silicon nitride with improved fracture toughness: I, effects of grain shape and size. J. Am. Ceram. Soc. 81, 2821–2830 (1998)

    Article  CAS  Google Scholar 

  52. Tajima, Y.: Development of high-performance silicon nitride ceramics and their applications. In: Chen, I.W. (ed.) Silicon Nitride Scientific and Technological Advances, p. 189. Pittsburgh, USA, journal = Mater. Res. Soc. (MRS Proc.) (1993)

    Google Scholar 

  53. Hoffmann, M.J.: Relationship between microstructure and mechanical properties of silicon nitride ceramics. Pure Appl. Chem. 67(6), 939–946 (1995)

    Article  CAS  Google Scholar 

  54. Becher, P.F., Painter, G.S., Shibata, N., Satet, R.L., Hoffmann, M.J., Pennycook, S.J.: Influence of additives on anisotropic grain growth in silicon nitride ceramics. Mater. Sci. Eng. A 422, 85–91 (2006)

    Article  Google Scholar 

  55. Becher, P.F., Painter, G.S., Shibata, N., Water, S.B., Lin, H.T.: Effect of rare-earth (RE) intergranular adsopriton on the phase transformation, microstructure evolution, and mechanical properties in silicon nitride with \(\hbox{RE}_2\hbox{O}_3\) + MgO additives: RE = La, Gd, and Lu. J. Am. Ceram. Soc. 91(7), 2328–2336 (2008)

    Article  CAS  Google Scholar 

  56. Bonnell, D.A., Tien, T.Y., Rühle, M.: Controlled crystallization of the amorphous phase in silicon nitride ceramics. J. Am. Ceram. Soc. 70, 460–465 (1987)

    Article  CAS  Google Scholar 

  57. Lee, W.W., Hilmas, G.E.: Microstructural changes in \(\beta\)-silicon nitride grains upon crystallizing the grain-boundary glass. J. Am. Ceram. Soc. 72, 1931–1937 (1989)

    Article  CAS  Google Scholar 

  58. Greil, P.: Analysis of Microstructural Development and Mechanical Properties of \(\hbox{Si}_3\hbox{N}_4\) Ceramics. In: Taylor, D. (ed.) High-Temperature Strengthening of Silicon Nitride Ceramics, p. 645. Stoke-on-Trent, Canterbury (1987)

    Google Scholar 

  59. Bergström, L., Pugh, R.J.: Interfacial characterization of silicon nitride powders. J. Am. Ceram. Soc. 72, 103–109 (1989)

    Article  Google Scholar 

  60. Keeble, H.J.: Structure and chemistry of interfaces in \(\hbox{Si}_3\hbox{N}_4\) ceramics studied by transmission electron microscopy. J. Ceram. Soc. Jpn. 105, 453–475 (1997)

    Google Scholar 

  61. Shibata, N., Pennycook, S.J., Gosnell, T.R., Painter, G.S., Shelton, W.A., Becher, P.F.: Observation of rare-earth segregation in silicon nitride ceramics at subnanometre dimensions. Nature 428(6984), 730–733 (2004)

    Article  CAS  Google Scholar 

  62. Benco, L.: Chemical bonding at grain boundaries: MgO on \(\beta\)-\(\hbox{Si}_3\hbox{N}_4\). Surf. Sci. 327, 274–284 (1995)

    Google Scholar 

  63. Liu, A.Y., Cohen, M.L.: Structural properties and electronic structure of low-compressibility materials: \(\beta-\hbox{Si}_3\hbox{N}_4\) and hypothetical \(\beta-\hbox{C}_3\hbox{N}_4\). Phys. Rev. B 41, 10727 (1990)

    Article  CAS  Google Scholar 

  64. Nakayasu, T., Yamada, T., Tanaka, I., Adachi, H.: Local chemical bonding around rare-earth ions in \(\alpha-\) and \(\beta-\hbox{Si}_3\hbox{N}_4\). J. Am. Ceram. Soc. 80, 2525–2532 (1997)

    Article  CAS  Google Scholar 

  65. Nakayasu, T., Yamada, T., Tanaka, I., Adachi, H.: Calculation of grain-boundary bonding in rare-earth-doped \(\beta-\hbox{Si}_3\hbox{N}_4\). J. Am. Ceram. Soc. 81, 565–570 (1998)

    Article  CAS  Google Scholar 

  66. Dudesek, P., Benco L.: Cation-aided joining of surfaces of \(\beta\)-silicon nitride: structural and electronic aspects. J. Am. Ceram. Soc. 81, 1248–1254 (1998)

    Article  CAS  Google Scholar 

  67. Bermudez, V.M.: Theoretical study of the electronic structure of the \(\hbox{Si}_3\hbox{N}_4\)(0001) surface. Surf. Sci. 579(1), 11–20 (2005)

    Article  CAS  Google Scholar 

  68. Wang, L., Wang, X., Tan, Y., Wang, H., Zhang, C.: Study of oxygen adsorption on beta-\(\hbox{Si}_3\hbox{N}_4\)(0001) by the density functional theory. Chem. Phys. 331(1), 92–95 (2006)

    Article  CAS  Google Scholar 

  69. Belkada, R., Shibayanagi, T., Naka, M.: Ab initio calculations of the atomic and electronic structure of \(\beta\)-silicon nitride. J. Am. Ceram. Soc. 83, 2449 (2000)

    Article  CAS  Google Scholar 

  70. Matsugana, K., Iwamoto, Y.: Ab initio molecular dynamics study of atomic structure and diffusion behavior in amorphous silicon nitride containing boron. J. Ceram. Soc. Jpn. 84, 2213–2219 (2001)

    Google Scholar 

  71. Pezzzotti, G., Painter, G.S.: Mechanisms of dopant-induced changes in intergranular \(\hbox{SiO}_2\) viscosity in polycrystalline silicon nitride. J. Am. Ceram. Soc. 85, 91–96 (2002)

    Article  Google Scholar 

  72. Painter, G.S., Averill, F.W., Becher, P.F., Shibata, N., Van Benthem, K., Pennycook, S.J.: First-principles study of rare earth adsorption at beta-\(\hbox{Si}_3\hbox{N}_4\) interfaces. Phy. Rev. B 78, 214206 (2008)

    Article  Google Scholar 

  73. Painter, G.S., Becher, P.F.: Bond energetics at intergranular interfaces in alumina-doped silicon nitride. J. Am. Ceram. Soc. 85, 65–67 (2002)

    Article  CAS  Google Scholar 

  74. Yoshiya, M., Tatsumi, K., Tanaka, I., Adachi, H.: Theoretical study on the chemistry of intergranular glassy film in \(\hbox{Si}_3\hbox{N}_4\)-\(\hbox{SiO}_2\) ceramics. J. Am. Ceram. Soc. 85, 109–112 (2002)

    Article  CAS  Google Scholar 

  75. Painter, G.S., Becher, P.F., Shelton, W.A., Satet, R.L., Hoffmann, M.J.: Theoretical study on the chemistry of intergranular glassy film in \(\hbox{Si}_3\hbox{N}_4\)-\(\hbox{SiO}_2\) ceramics. Phys. Rev. B 70, 144108 (2004)

    Article  Google Scholar 

  76. Rulis, P., Chen, J., Ouyang, L., Ching, W.Y., Su, X., Garofalini, S.H.: Electronic structure and bonding of intergranular glassy films in polycrystalline \(\hbox{Si}_3\hbox{N}_4\): ab initio studies and classical molecular dynamics simulations. Phys. Rev. B 71, 235317 (2005)

    Article  Google Scholar 

  77. Pennycook, S.J., Jesson, D.E.: High-resolution incoherent imaging of crystals. Phys. Rev. Lett. 64, 938–941 (1990)

    Google Scholar 

  78. Nellist, P.D., Pennycook, S.J.: The principles and interpretation of annular dark-field Z-contrast imaging. Adv. Imag. Elect. Phys. 113, 147–203 (2000)

    Google Scholar 

  79. Shibata, N., Painter, G.S., Becher, P.F., Pennycook, S.J.: Atomic ordering at an amorphous/crystal interface. Appl. Phys. Lett. 89(5), 051908 (2006)

    Article  Google Scholar 

  80. Ziegler, A., Idrobo, J.C., Cinibulk, M.K., Kisielowski, C., Browning, N.D., Ritchie, R.O.: Interface structure and atomic bonding characteristics in silicon nitride ceramics. Science 306, 1768–1770 (2004)

    Google Scholar 

  81. Ziegler, A., Idrobo, J.C., Cinibulk, M.K., Kisielowski, C., Browning, N.D., Ritchie, R.O.: Atomic-resolution observations of semicrystalline intergranular thin films in silicon nitride. Appl. Phys. Lett. 88(4), 041919 (2006)

    Article  Google Scholar 

  82. Van Benthem, K., Painter, G.S., Averill, F.W., Pennycook, S., Becher, P.F.: Experimental probe of adsorbate binding energies at internal crystalline/amorphous interfaces in Gd-doped \(\hbox{Si}_3\hbox{N}_4\). Appl. Phys. Lett. 92, 163110 (2008)

    Google Scholar 

  83. Winkelman, G.B., Dwyer, C., Marsh, C., Hudson, T.S., Nguyen-Manh, D., Döblinger, M., Cockayne, J.H.: The crystal/glass interface in doped \(\hbox{Si}_3\hbox{N}_4\). Mater. Sci. Eng. A 422, 77–84 (2006)

    Google Scholar 

  84. Winkelman, G.B., Dwyer, C., Hudson, T.S., Nguyen-Manh, D., Döblinger, M., Satet, R.L., Hoffmann, M.J., Cockayne, J.H.: Arrangement of rare-earth elements at prismatic grain boundaries in silicon nitride. Philos. Mag. Lett. 84, 755–762 (2004)

    Google Scholar 

  85. Walkosz, W., Klie, R.F., Öğüt, S., Borisevish, A., Becher, P.F., Pennycook, S.J., Idrobo, J.C.: Atomic resolution study of the interfacial bonding at \(\hbox{Si}_3\hbox{N}_4/\hbox{CeO}_{2-\delta}\) grain boundaries. Appl. Phys. Lett. 93, 053104 (2008)

    Google Scholar 

  86. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)

    Article  Google Scholar 

  87. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T., Joannopoulos, J.D.: Iterative minimization techniques for ab initio total energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(9), 30–35 (1992)

    Google Scholar 

  88. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(A4), A1133–A1138 (1965)

    Article  Google Scholar 

  89. Muller, D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009)

    Google Scholar 

  90. Pennycook, S.J.: Structure determination through Z-contrast microscopy. In: Merli, P.G., Vittor-Antisari, M. (eds.) Advances in Imaging and Electron Physics, vol. 123, p. 173. Academic Press, New York (2002)

    Google Scholar 

  91. Pennycook, S.J.: Z-contrast imaging in the scanning transmission electron microscope. In: Zhang, Z.F., Zhang, Z. (eds.) Progress in Transmission Electron Microscope 1: Concepts and Techniques, pp. 81–111. Springer, Tsinghyua (2001)

    Google Scholar 

  92. Egerton, R.F.: Applications of energy-loss spectroscopy. In: Electron Energy-Loss Spectrosocy in the Electron Microscopy 2nd edn., pp. 59–72. Plenum Press, New York (1996)

    Google Scholar 

  93. Idrobo, J.C., Öğüt, S., Yildirim, T., Klie, R.F., Browning, N.D.: Electronic and superconducting properties of oxygen-ordered \(\hbox{MgB}_2\) compounds of the form \(\hbox{Mg}_2\hbox{B}_3\hbox{O}_x\). Phys. Rev. B 70, 172503 (2004)

    Google Scholar 

  94. Bernholc, J.: Computational materials science: the era of applied quantum mechanics. Phys. Today 52(9), 30–35 (1999)

    Article  CAS  Google Scholar 

  95. He, H., Sekine, T., Kobayashi, T., Hirosaki, H., Suzuki, I.: Shock-induced phase transition of \(\beta\)-\(\hbox{Si}_3\hbox{N}_4\) to \(c\)-\(\hbox{Si}_3\hbox{N}_4\). Phys. Rev. B 62(17), 11412–11417 (2000)

    Google Scholar 

  96. Ching, W.Y., Ouyang, L., Gale, J.D.: Full ab initio geometry optimization of all known crystalline phases of \(\hbox{Si}_3\hbox{N}_4\). Phys. Rev. B 61, 13 (2000)

    Google Scholar 

  97. Hao, S., Delley, B., Veprek, S., Stampfl, C.: Superhard nitride-based nanocomposites: role of interfaces and effect of impurities. Phys. Rev. Lett. 97, 086102 (2006)

    Google Scholar 

  98. Mo, S.D., Ouyang, L., Ching, W.Y., Tanaka, I., Koyama, Y., Riedel, R.: Interesting physical properties of the new spinel phase of \(\hbox{Si}_3\hbox{N}_4\) and \(\hbox{C}_3\hbox{N}_4\). Phys. Rev. Lett. 83(24), 5046–5049 (1999)

    Google Scholar 

  99. Kuwabara, A., Matsunaga, K., Tanaka, I.: Lattice dynamics and thermodynamical properties of silicon nitride polymorphs. Phys. Rev. B 78, 064104 (2008)

    Google Scholar 

  100. Paszkowicz, W., Minikayev, R., Piszora, P., Knapp, M., Bähtz, C., Recio, J.M., Marques, M., Mori-Sanchez, P., Gerward, L., Jiang, J.Z.: Thermal expansion of spinel-type \(\hbox{Si}_3\hbox{N}_4\). Phys. Rev. B 69, 052103 (2004)

    Google Scholar 

  101. Idrobo, J., Iddir, H., Öğüt, S., Ziegler, A., Browning, N.D., Ritchie, R.O.: Ab initio structural energetics of \(\beta-\hbox{Si}_3\hbox{N}_4\) surfaces. Phys. Rev. B (Rapid Communications) 72, 241301 (2005)

    Google Scholar 

  102. Skorodumova, N.V., Ahuja, R., Simak, S.I., Abrikosov, I.A., Johansson, B., Lundqvist, B.I.: Electronic, bonding, and optical properties of \(\hbox{CeO}_2\) and \(\hbox{Ce}_2\hbox{O}_3\) from first principles. Phys. Rev. B 64, 115108 (2001)

    Article  Google Scholar 

  103. Andersson, D.A., Simak, S.I., Johansson, B., Abrikosov, I.A., Skorodumova, N.V.: Modeling of \(\hbox{CeO}_2\), \(\hbox{Ce}_2\hbox{O}_3\), and \(\hbox{CeO}_{2-x}\) in the LDA+\(U\) formalism. Phys. Rev. B 75, 035109 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weronika Walkosz .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Walkosz, W. (2011). Silicon Nitride Ceramics. In: Atomic Scale Characterization and First-Principles Studies of Si₃N₄ Interfaces. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7817-2_1

Download citation

Publish with us

Policies and ethics