A Multistep Mechanism for Assembly of the SRP–SR Complex

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Two GTPases in the signal recognition particle (SRP) and its receptor (SR) control the delivery of newly synthesized proteins to the ER or plasma membrane. During the protein targeting reaction, the 4.5S SRP RNA accelerates the association between the two GTPases by 400-fold. Using fluorescence resonance energy transfer (FRET), we demonstrate here that formation of a stable SRP–SR complex involves two distinct steps: a fast initial association between SRP and SR to form an early, GTP-independent complex, followed by a GTP-dependent conformational rearrangement to form the stable, final complex. We also found that the 4.5S SRP RNA significantly stabilizes the early, GTP-independent intermediate. Further, mutational analyses show that there is a strong correlation between the ability of the mutant SRP RNAs to stabilize the early intermediate and their ability to accelerate SRP–SR complex formation. We propose that the SRP RNA, by stabilizing the transient early intermediate, can give this intermediate a longer dwell time and therefore a higher probability to rearrange to the final, stable complex. This provides a coherent model that explains how the 4.5S RNA exerts its catalytic role in SRP–SR complex assembly.

Keywords

Hydrolysis Filtration Hydroxyl EDTA Titration 

Notes

Acknowledgments

We thank members of the Shan Laboratory for comments on the manuscript. This work was supported by NIH grant GM078024 to S.S. S.S. was supported by the Burroughs Wellcome Fund career award, the Henry and Camille Dreyfus foundation, the Beckman Young Investigator award, and the Packard and Lucile award in science and engineering. X.Z. was supported by a fellowship from the Ulric B. and Evelyn L. Bray Endowment Fund.

References

  1. 1.
    Walter P, Johnson AE (1994) Annu Rev Cell Biol 10:87CrossRefGoogle Scholar
  2. 2.
    Matlack KES, Mothes W, Rapoport TA (1998) Cell 92:381CrossRefGoogle Scholar
  3. 3.
    Johnson AE, van Waes MA (1999) Annu Rev Cell Dev Biol 15:799CrossRefGoogle Scholar
  4. 4.
    Shan SO, Walter P (2005) FEBS Lett 579:921CrossRefGoogle Scholar
  5. 5.
    Shan SO, Stroud RM, Walter P (2004) PLoS Biol 2:1572CrossRefGoogle Scholar
  6. 6.
    Shan SO, Chandrasekar S, Walter P (2007) J Cell Biol 178:611CrossRefGoogle Scholar
  7. 7.
    Walter P, Ibrahimi I, Blobel G (1981) J Cell Biol 91:545CrossRefGoogle Scholar
  8. 8.
    Walter P, Blobel G (1981) J Cell Biol 91:551CrossRefGoogle Scholar
  9. 9.
    Walter P, Blobel G (1981) J Cell Biol 91:557CrossRefGoogle Scholar
  10. 10.
    Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Science 287:1232CrossRefGoogle Scholar
  11. 11.
    Keenan RJ, Freymann DM, Walter P, Stroud RM (1998) Cell 94:181CrossRefGoogle Scholar
  12. 12.
    Krieg UC, Walter P, Johnson AE (1986) Proc Natl Acad Sci USA 83:8604CrossRefGoogle Scholar
  13. 13.
    Kurzchalia TV et al (1986) Nature 320:634CrossRefGoogle Scholar
  14. 14.
    Zopf D, Bernstein HD, Johnson AE, Walter P (1990) EMBO J 9:4511Google Scholar
  15. 15.
    Connolly T, Rapiejko PJ, Gilmore R (1991) Science 252:1171CrossRefGoogle Scholar
  16. 16.
    Egea PF et al (2004) Nature 427:215CrossRefGoogle Scholar
  17. 17.
    Peluso P et al (2000) Science 288:1640CrossRefGoogle Scholar
  18. 18.
    Powers T, Walter P (1995) Science 269:1422CrossRefGoogle Scholar
  19. 19.
    Cleverley RM, Gierasch LM (2002) J Biol Chem 277:46763CrossRefGoogle Scholar
  20. 20.
    Bourne HR, Sanders DA, Mccormick F (1991) Nature 349:117CrossRefGoogle Scholar
  21. 21.
    Gawronski-Salerno J, Coon JSV, Focia PJ, Freymann DM (2007) Proteins 66:984CrossRefGoogle Scholar
  22. 22.
    Focia PJ, Gawronski-Salerno J, Coon JS, Freymann DM (2006) J Mol Biol 360:631CrossRefGoogle Scholar
  23. 23.
    Freymann DM, Keenan RJ, Stroud RM, Walter P (1999) Nat Struct Biol 6:793CrossRefGoogle Scholar
  24. 24.
    Freymann DM, Keenan RJ, Stroud RM, Walter P (1997) Nature 385:361CrossRefGoogle Scholar
  25. 25.
    Peluso P, Shan SO, Nock S, Herschlag D, Walter P (2001) Biochemistry 40:15224CrossRefGoogle Scholar
  26. 26.
    Gu SQ et al (2005) RNA-Publ RNA Soc 11:1374Google Scholar
  27. 27.
    Siu FY, Spanggord RJ, Doudna JA (2007) RNA 13:240CrossRefGoogle Scholar
  28. 28.
    Sagar MB, Lucast L, Doudna JA (2004) RNA 10:772CrossRefGoogle Scholar
  29. 29.
    Brown S, Fournier MJ (1984) J Mol Biol 178:533CrossRefGoogle Scholar
  30. 30.
    Jagath JR et al (2001) RNA-Publ RNA Soc 7:293Google Scholar
  31. 31.
    Zheng N, Gierasch LM (1997) Mol Cell 1:79CrossRefGoogle Scholar
  32. 32.
    Poritz MA, Strub K, Walter P (1988) Cell 55:4CrossRefGoogle Scholar
  33. 33.
    Poritz MA et al (1990) Science 250:1111CrossRefGoogle Scholar
  34. 34.
    Batey RT, Sagar MB, Doudna JA (2001) J Mol Biol 307:229CrossRefGoogle Scholar
  35. 35.
    Hainzl T, Huang S, Sauer-Eriksson AE (2007) Proc Natl Acad Sci U S A 104:14911CrossRefGoogle Scholar
  36. 36.
    Stroud RM, Walter P (1999) Curr Opin Struct Biol 9:754CrossRefGoogle Scholar
  37. 37.
    Spanggord RJ, Siu F, Ke AL, Doudna JA (2005) Nat Struct Mol Biol 12:1116CrossRefGoogle Scholar
  38. 38.
    Mandon EC, Jiang Y, Gilmore R (2003) J Cell Biol 162:575CrossRefGoogle Scholar
  39. 39.
    Buskiewicz I et al (2005) J Mol Biol 351:417CrossRefGoogle Scholar
  40. 40.
    Powers T, Walter P (1997) EMBO J 16:4880CrossRefGoogle Scholar
  41. 41.
    Connolly T, Gilmore R (1989) Cell 57:599CrossRefGoogle Scholar
  42. 42.
    Rapiejko PJ, Gilmore R (1992) J Cell Biol 117:493CrossRefGoogle Scholar
  43. 43.
    Zopf D, Bernstein HD, Walter P (1993) J Cell Biol 120:1113CrossRefGoogle Scholar
  44. 44.
    Jagath JR, Rodnina MV, Wintermeyer W (2000) J Mol Biol 295:745CrossRefGoogle Scholar
  45. 45.
    Padmanabhan S, Freymann DM (2001) Structure 9:859CrossRefGoogle Scholar
  46. 46.
    Ramirez UD et al (2002) J Mol Biol 320:783CrossRefGoogle Scholar
  47. 47.
    Focia PJ, Alam H, Lu T, Ramirez UD, Freymann DM (2004) Proteins 54:222CrossRefGoogle Scholar
  48. 48.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.The Scripps Research InstituteLa JollaUSA

Personalised recommendations