Skip to main content

Suppression of DC and Twin-Image Terms

  • Chapter
  • First Online:
Book cover Digital Holographic Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 162))

  • 3030 Accesses

Abstract

The intensity distribution on a hologram contains four terms

$$ \begin{array}{lll} {I_{\text{H}}} = {\left| {{E_{\text{R}}} + {E_{\text{O}}}} \right|^2} = {\left| {{E_{\text{R}}}} \right|^2} + {\left| {{E_{\text{O}}}} \right|^2} + {E_{\text{R}}}^{*}{E_{\text{O}}} + {E_{\text{R}}}{E_{\text{O}}}^{*} \hfill \\ \quad \quad \quad \quad \quad \quad \; \equiv {I_{\text{R}}} + {I_{\text{O}}} + {\mathcal{E}_{\text{O}}} + {\mathcal{E}_{\text{O}}}^{*}. \hfill \\ \end{array} $$
(7.1)

Of these, normally only one of the last two terms yields the desired holographic image, while the other terms – the zero-order and twin-image terms – only contribute to blurring and interference of the image. This is especially true in in-line configurations where all four terms are superposed on top of each other, but even in off-axis configurations they can limit the number of usable pixels and cause degradation of images. It is therefore a major consideration in any holography system design and there have been developed a fairly large number of techniques addressing the “dc and twin-image problem.” Some of these remove the DC term only, while others can suppress the twin image as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. T. M. Kreis, and W. P. O. Juptner, “Suppression of the dc term in digital holography,” Optical Engineering 36, 2357–2360 (1997).

    Article  ADS  Google Scholar 

  2. G. L. Chen, C. Y. Lin, M. K. Kuo, and C. C. Chang, “Numerical suppression of zero-order image in digital holography,” Optics Express 15, 8851–8856 (2007).

    Article  ADS  Google Scholar 

  3. W. L. Bragg, and G. L. Rogers, “Elimination of the Unwanted Image in Diffraction Microscopy,” Nature 167, 190–191 (1951).

    Article  ADS  Google Scholar 

  4. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Applied Optics 38, 4990–4996 (1999).

    Article  ADS  Google Scholar 

  5. Y. M. Zhang, Q. N. Lu, and B. Z. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Optics Communications 240, 261–267 (2004).

    Article  ADS  Google Scholar 

  6. J. A. H. Ramirez, and J. Garcia-Sucerquia, “Digital off-axis holography without zero-order diffraction via phase manipulation,” Optics Communications 277, 259–263 (2007).

    Article  ADS  Google Scholar 

  7. N. Demoli, J. Mestrovic, and I. Sovic, “Subtraction digital holography,” Applied Optics 42, 798–804 (2003).

    Article  ADS  Google Scholar 

  8. D. S. Monaghan, D. P. Kelly, N. Pandey, and B. M. Hennelly, “Twin removal in digital holography using diffuse illumination,” Optics Letters 34, 3610–3612 (2009).

    Article  ADS  Google Scholar 

  9. E. Cuche, P. Marquet, and C. Depeursinge, “Spatial filtering for zero-order and twin-image elimination in digital off-axis holography,” Applied Optics 39, 4070–4075 (2000).

    Article  ADS  Google Scholar 

  10. F. Le Clerc, L. Collot, and M. Gross, “Numerical heterodyne holography with two-dimensional photodetector arrays,” Optics Letters 25, 716–718 (2000).

    Article  ADS  Google Scholar 

  11. J. W. Weng, J. G. Zhong, and C. Y. Hu, “Automatic spatial filtering to obtain the virtual image term in digital holographic microscopy,” Applied Optics 49, 189–195 (2010).

    Article  ADS  Google Scholar 

  12. L. Xu, J. M. Miao, and A. Asundi, “Properties of digital holography based on in-line configuration,” Opt. Eng. 39, 3214–3219 (2000).

    Article  ADS  Google Scholar 

  13. N. Pavillon, C. S. Seelamantula, J. Kuhn, M. Unser, and C. Depeursinge, “Suppression of the zero-order term in off-axis digital holography through nonlinear filtering,” Applied Optics 48, H186-H195 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung K. Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, M.K. (2011). Suppression of DC and Twin-Image Terms. In: Digital Holographic Microscopy. Springer Series in Optical Sciences, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7793-9_7

Download citation

Publish with us

Policies and ethics