Skip to main content

Theoretical Studies of Digital Holography

  • Chapter
  • First Online:
Digital Holographic Microscopy

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 162))

  • 2991 Accesses

Abstract

The diffraction theory is at the basis of development of digital holography and allows calculation of holographic images from the recorded holographic interference patterns [1]. In this chapter, we highlight some of the theoretical tools developed to enhance the capabilities of digital holography and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Wolf, “Determination of Amplitude and Phase of Scattered Fields by Holography,” Journal of the Optical Society of America 60, 18–20 (1970).

    Article  ADS  Google Scholar 

  2. C. Wagner, S. Seebacher, W. Osten, and W. Juptner, “Digital recording and numerical reconstruction of lensless Fourier holograms in optical metrology,” Applied Optics 38, 4812–4820 (1999).

    Article  ADS  Google Scholar 

  3. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).

    Article  ADS  Google Scholar 

  4. L. Onural, “Sampling of the diffraction field,” Applied Optics 39, 5929–5935 (2000).

    Article  ADS  Google Scholar 

  5. T. M. Kreis, “Frequency analysis of digital holography,” Optical Engineering 41, 771–778 (2002).

    Article  ADS  Google Scholar 

  6. T. M. Kreis, “Frequency analysis of digital holography with reconstruction by convolution,” Optical Engineering 41, 1829–1839 (2002).

    Article  ADS  Google Scholar 

  7. C. S. Guo, L. Zhang, Z. Y. Rong, and H. T. Wang, “Effect of the fill factor of CCD pixels on digital holograms: comment on the papers “Frequency analysis of digital holography” and “Frequency analysis of digital holography with reconstruction by convolution”,” Optical Engineering 42, 2768–2771 (2003).

    Article  ADS  Google Scholar 

  8. T. M. Kreis, “Response to “Effect of the fill factor of CCD pixels on digital holograms: comment on the papers ‘Frequency analysis of digital holography’ and ‘Frequency analysis of digital holography with reconstruction by convolution’”, Optical Engineering 42, 2772–2772 (2003).

    Article  ADS  Google Scholar 

  9. K. Khare, and N. George, “Direct coarse sampling of electronic holograms,” Optics Letters 28, 1004–1006 (2003).

    Article  ADS  Google Scholar 

  10. A. Stern, and B. Javidi, “Analysis of practical sampling and reconstruction from Fresnel fields,” Optical Engineering 43, 239–250 (2004).

    Article  ADS  Google Scholar 

  11. H. Z. Jin, H. Wan, Y. P. Zhang, Y. Li, and P. Z. Qiu, “The influence of structural parameters of CCD on the reconstruction image of digital holograms,” Journal of Modern Optics 55, 2989–3000 (2008).

    Article  ADS  Google Scholar 

  12. P. Picart, and J. Leval, “General theoretical formulation of image formation in digital Fresnel holography,” Journal of the Optical Society of America a-Optics Image Science and Vision 25, 1744–1761 (2008).

    Article  ADS  Google Scholar 

  13. D. P. Kelly, B. M. Hennelly, N. Pandey, T. J. Naughton, and W. T. Rhodes, “Resolution limits in practical digital holographic systems,” Optical Engineering 48, 095801 (2009).

    Article  ADS  Google Scholar 

  14. E. Wolf, “Determination of the Amplitude and the Phase of Scattered Fields by Holography,” Journal of the Optical Society of America 60, 18–20 (1970).

    Google Scholar 

  15. L. Onural, “Some mathematical properties of the uniformly sampled quadratic phase function and associated issues in digital Fresnel diffraction simulations,” Optical Engineering 43, 2557–2563 (2004).

    Article  ADS  Google Scholar 

  16. E. Carcole, J. Campos, and S. Bosch, “Diffraction Theory of Fresnel Lenses Encoded in Low-Resolution Devices,” Applied Optics 33, 162–174 (1994).

    Article  ADS  Google Scholar 

  17. L. Xu, X. Y. Peng, Z. X. Guo, J. M. Miao, and A. Asundi, “Imaging analysis of digital holography,” Optics Express 13, 2444–2452 (2005).

    Article  ADS  Google Scholar 

  18. B. M. Hennelly, and J. T. Sheridan, “Generalizing, optimizing, and inventing numerical algorithms for the fractional Fourier, Fresnel, and linear canonical transforms,” Journal of the Optical Society of America a-Optics Image Science and Vision 22, 917–927 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  19. A. Stern, and B. Javidi, “Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,” Journal of the Optical Society of America a-Optics Image Science and Vision 23, 1227–1235 (2006).

    Article  ADS  Google Scholar 

  20. G. Situ, and J. T. Sheridan, “Holography: an interpretation from the phase-space point of view,” Optics Letters 32, 3492–3494 (2007).

    Article  ADS  Google Scholar 

  21. A. Stern, and B. Javidi, “Space-bandwith conditions for efficient phase-shifting digital holographic microscopy,” Journal of the Optical Society of America a-Optics Image Science and Vision 25, 736–741 (2008).

    Article  ADS  Google Scholar 

  22. M. Testorf, and A. W. Lohmann, “Holography in phase space,” Applied Optics 47, A70-A77 (2008).

    Article  ADS  Google Scholar 

  23. P. Pellat-Finet, “Fresnel diffraction and fractional-order Fourier transform,” Opt. Lett. 19, 1388–1390 (1994).

    Google Scholar 

  24. Z.-T. Deng, H. J. Caulfield, and M. Schamschula, “Fractional discrete Fourier transforms,” Opt. Lett. 21, 1430–1432 (1996).

    Google Scholar 

  25. S. C. Pei, and M. H. Yeh, “Improved discrete fractional Fourier transform,” Opt. Lett. 22, 1047–1049 (1997).

    Google Scholar 

  26. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Applications of fractional transforms to object reconstruction from in-line holograms,” Optics Letters 29, 1793–1795 (2004).

    Article  ADS  Google Scholar 

  27. J. T. Sheridan, and R. Patten, “Holographic interferometry and the fractional Fourier transformation,” Opt. Lett. 25, 448–450 (2000).

    Article  ADS  Google Scholar 

  28. F. Nicolas, S. Coetmellec, M. Brunel, D. Allano, D. Lebrun, and A. Janssen, “Application of the fractional Fourier transformation to digital holography recorded by an elliptical, astigmatic Gaussian beam,” Journal of the Optical Society of America a-Optics Image Science and Vision 22, 2569–2577 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  29. N. Verrier, S. Coetmellec, M. Brunel, and D. Lebrun, “Digital in-line holography in thick optical systems: application to visualization in pipes,” Applied Optics 47, 4147–4157 (2008).

    Article  ADS  Google Scholar 

  30. N. Verrier, S. Coetmellec, M. Brunel, D. Lebrun, and A. Janssen, “Digital in-line holography with an elliptical, astigmatic Gaussian beam: wide-angle reconstruction,” Journal of the Optical Society of America a-Optics Image Science and Vision 25, 1459–1466 (2008).

    Article  ADS  Google Scholar 

  31. J. Hahn, H. Kim, and B. Lee, “Optical implementation of iterative fractional Fourier transform algorithm,” Optics Express 14, 11103–11112 (2006).

    Article  ADS  Google Scholar 

  32. J. W. Weng, J. G. Zhong, and C. Y. Hu, “Phase reconstruction of digital holography with the peak of the two-dimensional Gabor wavelet transform,” Applied Optics 48, 3308–3316 (2009).

    Article  ADS  Google Scholar 

  33. P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry,” Opt. Lett. 22, 1065–1067 (1997).

    Google Scholar 

  34. R. Recknagel, and G. Notni, “Analysis of white light interferograms using wavelet methods,” Opt. Comm. 148, 122–128 (1998).

    Article  ADS  Google Scholar 

  35. C. Shakher, R. Kumar, S. K. Singh, and S. A. Kazmi, “Application of wavelet filtering for vibration analysis using digital speckle pattern interferometry,” Optical Engineering 41, 176–180 (2002).

    Article  ADS  Google Scholar 

  36. J. Zhong, and J. Weng, “Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry,” Appl. Opt. 43, 4993–4998 (2004).

    Article  ADS  Google Scholar 

  37. L. Onural, “Diffraction from a Wavelet Point-of-View,” Optics Letters 18, 846–848 (1993).

    Article  ADS  Google Scholar 

  38. M. Liebling, T. Blu, and M. Unser, “Fresnelets: New multiresolution wavelet bases for digital holography,” IEEE Trans. Image Process. 12, 29–43 (2003).

    Article  MathSciNet  ADS  Google Scholar 

  39. J. W. Weng, J. G. Zhong, and C. Y. Hu, “Digital reconstruction based on angular spectrum diffraction with the ridge of wavelet transform in holographic phase-contrast microscopy,” Optics Express 16, 21971–21981 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung K. Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, M.K. (2011). Theoretical Studies of Digital Holography. In: Digital Holographic Microscopy. Springer Series in Optical Sciences, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7793-9_6

Download citation

Publish with us

Policies and ethics