Advertisement

Low-Coherence and Tomographic Techniques

  • Myung K. Kim
Chapter
Part of the Springer Series in Optical Sciences book series (SSOS, volume 162)

Abstract

Digital holography using low-coherence light source has distinct imaging characteristics and applications. A number of special techniques have been developed to take advantage of such distinct characteristics of interference by low-coherence light. Topographic and tomographic imaging follow naturally from the well-established and still evolving field of low-coherence interferometry. A very significant contribution by digital holography is the possibility of holographic recording of white light or fluorescence. Although some of the principles have been known in conventional holography, recording of extended objects under white light illumination suffers from precipitous degradation of interference contrast due to noninterfering background. DH-related techniques, such as phase shifting, allow efficient removal of the background. Some of these may develop into powerful and practical new imaging technologies.

Keywords

Coherence Length Spherical Wave Axial Resolution Digital Holography Diffractive Optical Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional imaging with a digital holography microscope with a source of partial spatial coherence,” Applied Optics 38, 7085–7094 (1999).ADSGoogle Scholar
  2. 2.
    G. Pedrini, and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Applied Optics 41, 4489–4496 (2002).ADSGoogle Scholar
  3. 3.
    L. Martinez-Leon, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Applied Optics 44, 3977–3984 (2005).ADSGoogle Scholar
  4. 4.
    P. Massatsch, F. Charriere, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Applied Optics 44, 1806–1812 (2005).ADSGoogle Scholar
  5. 5.
    L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Optics Letters 29, 1132–1134 (2004).ADSGoogle Scholar
  6. 6.
    B. Kemper, S. Sturwald, C. Remmersmann, P. Langehanenberg, and G. von Bally, “Characterisation of light emitting diodes (LEDs) for application in digital holographic microscopy for inspection of micro and nanostructured surfaces,” Optics and Lasers in Engineering 46, 499–507 (2008).ADSGoogle Scholar
  7. 7.
    J. Garcia-Sucerquia, J. H. Ramirez, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Optics Communications 260, 62–67 (2006).ADSGoogle Scholar
  8. 8.
    F. Dubois, M. L. N. Requena, C. Minetti, O. Monnom, and E. Istasse, “Partial spatial coherence effects in digital holographic microscopy with a laser source,” Applied Optics 43, 1131–1139 (2004).ADSGoogle Scholar
  9. 9.
    F. Dubois, N. Callens, C. Yourassowsky, M. Hoyos, P. Kurowski, and O. Monnom, “Digital holographic microscopy with reduced spatial coherence for three-dimensional particle flow analysis,” Applied Optics 45, 864–871 (2006).ADSGoogle Scholar
  10. 10.
    J. Rosen, and G. Brooker, “Digital spatially incoherent Fresnel holography,” Optics Letters 32, 912–914 (2007).ADSGoogle Scholar
  11. 11.
    J. Rosen, and G. Brooker, “Fluorescence incoherent color holography,” Optics Express 15, 2244–2250 (2007).ADSGoogle Scholar
  12. 12.
    J. Rosen, and G. Brooker, “Non-scanning motionless fluorescence three-dimensional holographic microscopy,” Nat. Photonics 2, 190–195 (2008).ADSGoogle Scholar
  13. 13.
    E. N. Leith, and Upatniek.J, “Holography with Achromatic-Fringe Systems,” Journal of the Optical Society of America 57, 975–& (1967).Google Scholar
  14. 14.
    G. Cochran, “New method of making Fresnel transforms with incoherent light,” Journal of the Optical Society of America 56, 1513–& (1966).Google Scholar
  15. 15.
    S. G. Kim, B. Lee, and E. S. Kim, “Removal of bias and the conjugate image in incoherent on-axis triangular holography and real-time reconstruction of the complex hologram,” Applied Optics 36, 4784–4791 (1997).ADSGoogle Scholar
  16. 16.
    G. Sirat, and D. Psaltis, “Conoscopic Holography,” Optics Letters 10, 4–6 (1985).ADSGoogle Scholar
  17. 17.
    L. M. Mugnier, G. Y. Sirat, and D. Charlot, “Conoscopic holography: two-dimensional numerical reconstructions,” Opt. Lett. 18, 66–68 (1993).ADSGoogle Scholar
  18. 18.
    T. C. Poon, “Scanning Holography and Two-Dimensional Image-Processing by Acoustooptic 2-Pupil Synthesis,” Journal of the Optical Society of America a-Optics Image Science and Vision 2, 521–527 (1985).ADSGoogle Scholar
  19. 19.
    T. C. Poon, “Optical Scanning Holography – A Review of Recent Progress,” J. Opt. Soc. Korea. 13, 406–415 (2009).Google Scholar
  20. 20.
    T.-C. Poon, “Three-dimensional image processing and optical scanning holography,” Adv. Imaging & Electron Phys. 126, 329–350 (2003).Google Scholar
  21. 21.
    T. C. Poon, T. Kim, G. Indebetouw, B. W. Schilling, M. H. Wu, K. Shinoda, and Y. Suzuki, “Twin-image elimination experiments for three-dimensional images in optical scanning holography,” Optics Letters 25, 215–217 (2000).ADSGoogle Scholar
  22. 22.
    G. Indebetouw, Y. Tada, and J. Leacock, “Quantitative phase imaging with scanning holographic microscopy: an experimental assessment,” Biomed. Eng. Online 5, 63 (2006).Google Scholar
  23. 23.
    B. W. Schilling, T. C. Poon, G. Indebetouw, B. Storrie, K. Shinoda, Y. Suzuki, and M. H. Wu, “Three-dimensional holographic fluorescence microscopy,” Optics Letters 22, 1506–1508 (1997).ADSGoogle Scholar
  24. 24.
    G. Indebetouw, and W. Zhong, “Scanning holographic microscopy of three-dimensional fluorescent specimens,” J. Opt. Soc. Am. A 23, 1699–1707 (2006).ADSGoogle Scholar
  25. 25.
    T.-C. Poon, M. H. Wu, K. Shinoda, and T. Suzuki, “Optical scanning holography,” Proc. IEEE 84, 753–764 (1996).Google Scholar
  26. 26.
    G. Indebetouw, “Properties of a scanning holographic microscope: improved resolution, extended depth-of-focus, and/or optical sectioning,” J. Mod. Opt. 49, 1479–1500 (2002).ADSGoogle Scholar
  27. 27.
    G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Applied Optics 46, 993–1000 (2007).ADSGoogle Scholar
  28. 28.
    G. Indebetouw, and P. Klysubun, “Space-time digital holography: A three-dimensional microscopic imaging scheme with an arbitrary degree of spatial coherence,” Applied Physics Letters 75, 2017–2019 (1999).ADSGoogle Scholar
  29. 29.
    G. Indebetouw, and P. Klysubun, “Imaging through scattering media with depth resolution by use of low-coherence gating in spatiotemporal digital holography,” Optics Letters 25, 212–214 (2000).ADSGoogle Scholar
  30. 30.
    D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).ADSGoogle Scholar
  31. 31.
    J. G. Fujimoto, M. E. Brezinski, G. J. Tearney, S. A. Boppart, B. E. Bouma, M. R. Hee, J. F. Southern, and E. A. Swanson, “Optical biopsy and imaging using optical coherence tomography,” Nature Med. 1, 970–972 (1995).Google Scholar
  32. 32.
    A. F. Fercher, K. Mengedoht, and W. Werner, “Eye-length measurement by interferometry with partially coherent light,” Optics Letters 13, 186–188 (1988).ADSGoogle Scholar
  33. 33.
    A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).ADSGoogle Scholar
  34. 34.
    S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).Google Scholar
  35. 35.
    M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).ADSGoogle Scholar
  36. 36.
    M. D. Kulkarni, T. G. v. Leeuwen, S. Yazdanfar, and J. A. Izatt, “Velocity-estimation accuracy and frame-rate limitations in color Doppler optical coherence tomography,” Opt. Lett. 23, 1057–1059 (1998).ADSGoogle Scholar
  37. 37.
    Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. d. Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25, 114–116 (2000).ADSGoogle Scholar
  38. 38.
    M. Pircher, B. Baumann, E. Gotzinger, and C. K. Hitzenberger, “Retinal cone mosaic imaged with transverse scanning optical coherence tomography,” Optics Letters 31, 1821–1823 (2006).ADSGoogle Scholar
  39. 39.
    R. J. Zawadzki, S. M. Jones, S. S. Olivier, M. T. Zhao, B. A. Bower, J. A. Izatt, S. Choi, S. Laut, and J. S. Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Optics Express 13, 8532–8546 (2005).ADSGoogle Scholar
  40. 40.
    A. B. Vakhtin, K. A. Peterson, W. R. Wood, and D. J. Kane, “Differential spectral interferometry:an imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003).Google Scholar
  41. 41.
    J. Zhang, B. Rao, L. F. Yu, and Z. P. Chen, “High-dynamic-range quantitative phase imaging with spectral domain phase microscopy,” Optics Letters 34, 3442–3444 (2009).ADSGoogle Scholar
  42. 42.
    M. Sticker, C. K. Hitzenberger, R. Leitgeb, and A. F. Fercher, “Quantitative differential phase measurement and imaging in transparent and turbid media by optical coherence tomography,” Opt. Lett. 26, 518–520 (2001).Google Scholar
  43. 43.
    M. Sticker, M. Pircher, E. Gtzinger, H. Sattmann, A. F. Fercher, and C. K. Hitzenberger, “En face imaging of single cell layers by differential phase-contrast optical coherence microscopy,” Opt. Lett. 27, 1126–1128 (2002).Google Scholar
  44. 44.
    C. Yang, A. Wax, I. Georgakoudi, E. B. Hanlon, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Interferometric phase-dispersion microscopy,” Opt. Lett. 25, 1526–1528 (2000).Google Scholar
  45. 45.
    C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “Phase-dispersion optical tomography,” Opt. Lett. 26, 686 (2001).Google Scholar
  46. 46.
    C. Yang, A. Wax, M. S. Hahn, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics,” Optics Letters 26, 1271–1273 (2001).ADSGoogle Scholar
  47. 47.
    E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, and H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).Google Scholar
  48. 48.
    A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18, 1972–1979 (2001).ADSGoogle Scholar
  49. 49.
    A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with Linnik microscope,” Appl. Opt. 41, 805–812 (2002).ADSGoogle Scholar
  50. 50.
    L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2002).Google Scholar
  51. 51.
    G. Moneron, A. L. Boccara, and A. Dubois, “Polarization-sensitive full-field optical coherence tomography,” Optics Letters 32, 2058–2060 (2007).ADSGoogle Scholar
  52. 52.
    C. W. Dunsby, Y. Gu, and P. M. W. French, “Single-shot phase-stepped wide-field coherence-gated imaging,” Opt. Express 11, 105–115 (2003).ADSGoogle Scholar
  53. 53.
    E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberl, C. Rlliere, P. Minot, M. Lassegues, and J. Bazeille, “Wide-field optical coherence tomography: imaging of biological tissues,” Appl. Opt. 41, 2059–2064 (2002).ADSGoogle Scholar
  54. 54.
    B. Laude, A. De Martino, B. Drevillon, L. Benattar, and L. Schwartz, “Full-field optical coherence tomography with thermal light,” Appl. Opt. 41, 6637–6645 (2002).ADSGoogle Scholar
  55. 55.
    M. Akiba, K. P. Chan, and N. Tanno, “Full-field optical coherence tomography by two-dimensional heterodyne detection with a pair of CCD cameras,” Opt. Lett. 28, 816–818 (2003).Google Scholar
  56. 56.
    M. C. Pitter, C. W. See, and M. G. Somekh, “Full-field heterodyne interference microscope with spatially incoherent illumination,” Opt. Lett. 29, 1200–1202 (2004).ADSGoogle Scholar
  57. 57.
    S. Bourquin, P. Seitz, and R. P. Salath, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).Google Scholar
  58. 58.
    M. Ducros, M. Laubscher, B. Karamata, S. Bouquin, T. Lasser, and R. P. Salathe, “Parallel optical coherence tomography in scattering samples using a two-dimensional smart-pixel detector array,” Opt. Comm. 202, 29–35 (2002).ADSGoogle Scholar
  59. 59.
    M. Laubscher, M. Ducros, B. Karamata, and R. P. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Express 10, 429–435 (2002).ADSGoogle Scholar
  60. 60.
    M. Roy, G. Cox, and P. Hariharan, “Low-coherence interference microscopy with an improved switchable achromatic phase-shifter,” Opt. Express 13, 9125–9130 (2005).ADSGoogle Scholar
  61. 61.
    L. F. Yu, and M. K. Kim, “Full-color three-dimensional microscopy by wide-field optical coherence tomography,” Optics Express 12, 6632–6641 (2004).ADSGoogle Scholar
  62. 62.
    M. V. Sarunic, S. Weinberg, and J. A. Izatt, “Full-field swept-source phase microscopy,” Optics Letters 31, 1462–1464 (2006).ADSGoogle Scholar
  63. 63.
    Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Optics Express 14, 5201–5209 (2006).ADSGoogle Scholar
  64. 64.
    M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12, 041202 (2007).Google Scholar
  65. 65.
    W. J. Choi, J. Na, H. Y. Choi, J. Eom, and B. H. Lee, “Active feedback wide-field optical low-coherence interferometry for ultrahigh-speed three-dimensional morphometry,” Measurement Science & Technology 21, 045503 (2010).Google Scholar
  66. 66.
    N. Abramson, “Light-in-Flight Recording by Holography,” Optics Letters 3, 121–123 (1979).ADSGoogle Scholar
  67. 67.
    T. Kubota, and Y. Awatsuji, “Observation of light propagation by holography with a picosecond pulsed laser,” Opt. Lett. 27, 815 (2002).Google Scholar
  68. 68.
    J. Pomarico, U. Schnars, H. J. Hartmann, and W. Juptner, “Digital Recording and Numerical Reconstruction of Holograms - a New Method for Displaying Light in-Flight,” Applied Optics 34, 8095–8099 (1995).ADSGoogle Scholar
  69. 69.
    B. Nilsson, and T. E. Carlsson, “Direct three-dimensional shape measurement by digital light-in-flight holography,” Applied Optics 37, 7954–7959 (1998).ADSGoogle Scholar
  70. 70.
    T. E. Carlsson, B. Nilsson, and J. Gustafsson, “System for acquisition of three-dimensional shape and movement using digital Light-in-Flight holography,” Optical Engineering 40, 67–75 (2001).ADSGoogle Scholar
  71. 71.
    M. K. Kim, “Wavelength scanning digital interference holography for optical section imaging,” Opt. Lett. 24, 1693–1695 (1999).Google Scholar
  72. 72.
    L. F. Yu, and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Optics Letters 30, 2092–2094 (2005).ADSGoogle Scholar
  73. 73.
    L. F. Yu, and M. K. Kim, “Wavelength scanning digital interference holography for variable tomographic scanning,” Optics Express 13, 5621–5627 (2005).ADSGoogle Scholar
  74. 74.
    A. Dakoff, J. Gass, and M. K. Kim, “Microscopic three-dimensional imaging by digital interference holography,” J. Electron. Imaging 12, 643–647 (2003).ADSGoogle Scholar
  75. 75.
    M. C. Potcoava, and M. K. Kim, “Optical tomography for biomedical applications by digital interference holography,” Measurement Science & Technology 19, 074010 (2008).Google Scholar
  76. 76.
    M. C. Potcoava, C. N. Kay, M. K. Kim, and D. W. Richards, “In vitro imaging of ophthalmic tissue by digital interference holography,” Journal of Modern Optics 57, 115–123 (2010).ADSMATHGoogle Scholar
  77. 77.
    M. C. Potcoava, and M. K. Kim, “Fingerprint biometry applications of digital holography and low-coherence interferography,” Applied Optics 48, H9-H15 (2009).Google Scholar
  78. 78.
    J. C. Marron, and K. S. Schroeder, “3-Dimensional Lensless Imaging Using Laser Frequency Diversity,” Applied Optics 31, 255–262 (1992).ADSGoogle Scholar
  79. 79.
    J. C. Marron, and T. J. Schulz, “3-Dimensional, Fine-Resolution Imaging Using Laser Frequency Diversity,” Optics Letters 17, 285–287 (1992).ADSGoogle Scholar
  80. 80.
    J. C. Marron, and K. S. Schroeder, “Holographic laser radar,” Opt. Lett. 18, 385–387 (1993).ADSGoogle Scholar
  81. 81.
    J. C. Marron, and K. Gleichman, “Three-dimensional imaging using a tunable laser source,” Opt. Engg. 39, 47–51 (2000).ADSGoogle Scholar
  82. 82.
    M. P. Shih, H. S. Chen, and E. N. Leith, “Spectral holography for coherence-gated imaging,” Opt. Lett. 24, 52–54 (1999).Google Scholar
  83. 83.
    L. F. Yu, and Z. P. Chen, “Improved tomographic imaging of wavelength scanning digital holographic microscopy by use of digital spectral shaping,” Optics Express 15, 878–886 (2007).ADSGoogle Scholar
  84. 84.
    G. Sheoran, S. Dubey, A. Anand, D. S. Mehta, and C. Shakher, “Swept-source digital holography to reconstruct tomographic images,” Optics Letters 34, 1879–1881 (2009).ADSGoogle Scholar
  85. 85.
    L. F. Yu, and Z. P. Chen, “Digital holographic tomography based on spectral interferometry,” Optics Letters 32, 3005–3007 (2007).ADSGoogle Scholar
  86. 86.
    F. Montfort, T. Colomb, F. Charriere, J. Kuhn, P. Marquet, E. Cuche, S. Herminjard, and C. Depeursinge, “Submicrometer optical tomography by multiple-wavelength digital holographic microscopy,” Applied Optics 45, 8209–8217 (2006).ADSGoogle Scholar
  87. 87.
    J. Kuhn, F. Montfort, T. Colomb, B. Rappaz, C. Moratal, N. Pavillon, P. Marquet, and C. Depeursinge, “Submicrometer tomography of cells by multiple-wavelength digital holographic microscopy in reflection,” Optics Letters 34, 653–655 (2009).ADSGoogle Scholar
  88. 88.
    S. J. Jeong, and C. K. Hong, “Illumination-angle-scanning digital interference holography for optical section imaging,” Optics Letters 33, 2392–2394 (2008).ADSGoogle Scholar
  89. 89.
    Y. Jeon, and C. K. Hong, “Optical section imaging of the tilted planes by illumination-angle-scanning digital interference holography,” Applied Optics 49, 5110–5116 (2010).ADSGoogle Scholar
  90. 90.
    M. R. Fetterman, E. Tan, L. Ying, R. A. Stack, D. L. Marks, S. Feller, E. Cull, J. M. Sullivan, D. C. Munson, S. Thoroddsen, and D. J. Brady, “Tomographic imaging of foam,” Opt. Express 7, 186–197 (2000).ADSGoogle Scholar
  91. 91.
    J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Serensen, R. Baldock, and D. Davidson, “Optical projection tomography as a tool for 3D microscopy and gene expression studies,” Science 296, 541–545 (2002).ADSGoogle Scholar
  92. 92.
    F. Charriere, A. Marian, F. Montfort, J. Kuehn, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Cell refractive index tomography by digital holographic microscopy,” Optics Letters 31, 178–180 (2006).ADSGoogle Scholar
  93. 93.
    F. Charriere, N. Pavillon, T. Colomb, C. Depeursinge, T. J. Heger, E. A. D. Mitchell, P. Marquet, and B. Rappaz, “Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba,” Optics Express 14, 7005–7013 (2006).ADSGoogle Scholar
  94. 94.
    W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nature Methods 4, 717–719 (2007).Google Scholar
  95. 95.
    W. S. Choi, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Extended depth of focus in tomographic phase microscopy using a propagation algorithm,” Optics Letters 33, 171–173 (2008).ADSGoogle Scholar
  96. 96.
    M. Debailleul, B. Simon, V. Georges, O. Haeberle, and V. Lauer, “Holographic microscopy and diffractive microtomography of transparent samples,” Measurement Science & Technology 19, 074009 (2008).ADSGoogle Scholar
  97. 97.
    J. Lobera, and J. M. Coupland, “Optical diffraction tomography in fluid velocimetry: the use of a priori information,” Measurement Science & Technology 19, 074013 (2008).Google Scholar
  98. 98.
    A. Devaney, and J. Cheng, “Optical diffraction tomography in an inhomogeneous background medium,” Measurement Science & Technology 19, 085505 (2008).Google Scholar
  99. 99.
    Y. Jeon, and C. K. Hong, “Rotation error correction by numerical focus adjustment in tomographic phase microscopy,” Optical Engineering 48, 105801 (2009).ADSGoogle Scholar
  100. 100.
    T. Kozacki, R. Krajewski, and M. Kujawinska, “Reconstruction of refractive-index distribution in off-axis digital holography optical diffraction tomographic system,” Optics Express 17, 13758–13767 (2009).ADSGoogle Scholar
  101. 101.
    N. M. Dragomir, X. M. Goh, and A. Roberts, “Three-dimensional refractive index reconstruction with quantitative phase tomography,” Microscopy Research and Technique 71, 5-10 (2008).Google Scholar
  102. 102.
    N. Fukutake, and T. D. Milster, “Proposal of three-dimensional phase contrast holographic microscopy,” Optics Express 15, 12662–12679 (2007).ADSGoogle Scholar
  103. 103.
    O. Haeberle, K. Belkebir, H. Giovaninni, and A. Sentenac, “Tomographic diffractive microscopy: basics, techniques and perspectives,” Journal of Modern Optics 57, 686–699 (2010).ADSMATHGoogle Scholar
  104. 104.
    K. Jeong, J. J. Turek, and D. D. Nolte, “Fourier-domain digital holographic optical coherence imaging of living tissue,” Applied Optics 46, 4999–5008 (2007).ADSGoogle Scholar
  105. 105.
    K. Jeong, J. J. Turek, and D. D. Nolte, “Volumetric motility-contrast imaging of tissue response to cytoskeletal anti-cancer drugs,” Optics Express 15, 14057–14064 (2007).ADSGoogle Scholar
  106. 106.
    E. Arons, D. Dilworth, M. Shih, and P. C. Sun, “Use of Fourier synthesis holography to image through inhomogeneities,” Opt. Lett. 18, 1852–1854 (1993).ADSGoogle Scholar
  107. 107.
    H. Chen, Y. Chen, D. Dilworth, E. Leith, J. Lopez, and J. Valdmanis, “2-Dimensional Imaging through Diffusing Media Using 150-Fs Gated Electronic Holography Techniques,” Optics Letters 16, 487–489 (1991).ADSGoogle Scholar
  108. 108.
    E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P. C. Sun, J. Valdmanis, and G. Vossler, “Imaging through Scattering Media with Holography,” Journal of the Optical Society of America a-Optics Image Science and Vision 9, 1148–1153 (1992).ADSGoogle Scholar
  109. 109.
    P. Naulleau, and D. Dilworth, “Holographic first-arriving-light signal-to-noise ratio enhancement by differential holography,” Opt. Lett. 20, 2354–2356 (1995).ADSGoogle Scholar
  110. 110.
    E. Leith, P. Naulleau, and D. Dilworth, “Ensemble-averaged imaging through highly scattering media,” Opt. Lett. 21, 1691–1693 (1996).ADSGoogle Scholar
  111. 111.
    S. Tamano, Y. Hayasaki, and N. Nishida, “Phase-shifting digital holography with a low-coherence light source for reconstruction of a digital relief object hidden behind a light-scattering medium,” Applied Optics 45, 953–959 (2006).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations