Skip to main content

Special Techniques of Digital Holography

  • Chapter
  • First Online:

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 162))

Abstract

Here we highlight special techniques of DH that combine the numerical processing capabilities with variations on the hardware configurations. In this and the following chapters, we survey some of the large number of novel techniques and capabilities that are made possible by digital processing of holograms. We will also see that many of these techniques finally provide highly effective solutions to problems that have been known in conventional holography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Optics Letters 27, 2179–2181 (2002).

    Article  ADS  Google Scholar 

  2. L. Martinez-Leon, and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Optics Express 16, 161–169 (2008).

    Article  ADS  Google Scholar 

  3. J. L. Di, J. L. Zhao, H. Z. Jiang, P. Zhang, Q. Fan, and W. W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Applied Optics 47, 5654–5659 (2008).

    Article  ADS  Google Scholar 

  4. T. Kreis, and K. Schluter, “Resolution enhancement by aperture synthesis in digital holography,” Optical Engineering 46, 055803–055807 (2007).

    Article  ADS  Google Scholar 

  5. R. Binet, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Applied Optics 41, 4775–4782 (2002).

    Article  ADS  Google Scholar 

  6. P. Almoro, G. Pedrini, and W. Osten, “Aperture synthesis in phase retrieval using a volume-speckle field,” Optics Letters 32, 733–735 (2007).

    Article  ADS  Google Scholar 

  7. M. Bashkansky, R. L. Lucke, E. Funk, L. J. Rickard, and J. Reintjes, “Two-dimensional synthetic aperture imaging in the optical domain,” Opt. Lett. 27, 1983–1985 (2002).

    Article  ADS  Google Scholar 

  8. F. Le Clerc, M. Gross, and L. Collot, “Synthetic-aperture experiment in the visible with on-axis digital heterodyne holography,” Optics Letters 26, 1550–1552 (2001).

    Article  ADS  Google Scholar 

  9. J. R. Price, P. R. Bingham, and C. E. Thomas, “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Applied Optics 46, 827–833 (2007).

    Article  ADS  Google Scholar 

  10. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Physical Review Letters 97, 168102 (2006).

    Google Scholar 

  11. T. R. Hillman, T. Gutzler, S. A. Alexandrov, and D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Optics Express 17, 7873–7892 (2009).

    Article  ADS  Google Scholar 

  12. C. J. Yuan, H. C. Zhai, and H. T. Liu, “Angular multiplexing in pulsed digital holography for aperture synthesis,” Optics Letters 33, 2356–2358 (2008).

    Article  ADS  Google Scholar 

  13. C. Liu, Z. G. Liu, F. Bo, Y. Wang, and J. Q. Zhu, “Super-resolution digital holographic imaging method,” Applied Physics Letters 81, 3143–3145 (2002).

    Article  ADS  Google Scholar 

  14. M. Paturzo, F. Merola, S. Grilli, S. De Nicola, A. Finizio, and P. Ferraro, “Super-resolution in digital holography by a two-dimensional dynamic phase grating,” Optics Express 16, 17107–17118 (2008).

    Article  ADS  Google Scholar 

  15. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Applied Optics 45, 822–828 (2006).

    Article  ADS  Google Scholar 

  16. V. Mico, Z. Zalevsky, and J. Garcia, “Superresolution optical system by common-path interferometry,” Optics Express 14, 5168–5177 (2006).

    Article  ADS  Google Scholar 

  17. V. Mico, Z. Zalevsky, P. Garcia-Martinez, and J. Garcia, “Synthetic aperture superresolution with multiple off-axis holograms,” Journal of the Optical Society of America a-Optics Image Science and Vision 23, 3162–3170 (2006).

    Article  ADS  Google Scholar 

  18. T. Nakatsuji, and K. Matsushima, “Free-viewpoint images captured using phase-shifting synthetic aperture digital holography,” Applied Optics 47, D136-D143 (2008).

    Article  ADS  Google Scholar 

  19. M. H. Maleki, and A. J. Devaney, “Noniterative Reconstruction of Complex-Valued Objects from 2 Intensity Measurements,” Optical Engineering 33, 3243–3253 (1994).

    Article  ADS  Google Scholar 

  20. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Reconstruction of in-line digital holograms from two intensity measurements,” Optics Letters 29, 1787–1789 (2004).

    Article  ADS  Google Scholar 

  21. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalized in-line digital holographic technique based on intensity measurements at two different planes,” Applied Optics 47, 711–717 (2008).

    Article  ADS  Google Scholar 

  22. Y. Zhang, G. Pedrini, W. Osten, and H. J. Tiziani, “Whole optical wave field reconstruction from double or multi in-line holograms by phase retrieval algorithm,” Optics Express 11, 3234–3241 (2003).

    Article  ADS  Google Scholar 

  23. A. Anand, G. Pedrini, W. Osten, and P. Almoro, “Wavefront sensing with random amplitude mask and phase retrieval,” Optics Letters 32, 1584–1586 (2007).

    Article  ADS  Google Scholar 

  24. A. Anand, and B. Javidi, “Three-dimensional microscopy with single-beam wavefront sensing and reconstruction from speckle fields,” Optics Letters 35, 766–768 (2010).

    Article  ADS  Google Scholar 

  25. Y. X. Zhang, and X. Y. Zhang, “Reconstruction of a complex object from two in-line holograms,” Optics Express 11, 572–578 (2003).

    Article  ADS  Google Scholar 

  26. T. Nakamura, K. Nitta, and O. Matoba, “Iterative algorithm of phase determination in digital holography for real-time recording of real objects,” Applied Optics 46, 6849–6853 (2007).

    Article  ADS  Google Scholar 

  27. M. G. Raymer, M. Beck, and D. F. McAlister, “Complex wave-field reconstruction using phase-space tomography,” Phys. Rev. Lett. 72, 1137–1140 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. D. F. Mcalister, M. Beck, L. Clarke, A. Mayer, and M. G. Raymer, “Optical-Phase Retrieval by Phase-Space Tomography and Fractional-Order Fourier-Transforms,” Optics Letters 20, 1181–1183 (1995).

    Article  ADS  Google Scholar 

  29. A. Barty, K. A. Nugent, D. Paganin, and A. Roberts, “Quantitative optical phase microscopy,” Optics Letters 23, 817–819 (1998).

    Article  ADS  Google Scholar 

  30. D. Paganin, and K. A. Nugent, “Noninterferometric phase imaging with partially coherent light,” Phys. Rev. Lett. 80, 2586–2589 (1998).

    Article  ADS  Google Scholar 

  31. T. E. Gureyev, A. Pogany, D. M. Paganin, and S. W. Wilkins, “Linear algorithms for phase retrieval in the Fresnel region,” Optics Communications 231, 53–70 (2004).

    Article  ADS  Google Scholar 

  32. C. S. Guo, Q. Y. Yue, G. X. Wei, L. L. Lu, and S. J. Yue, “Laplacian differential reconstruction of in-line holograms recorded at two different distances,” Optics Letters 33, 1945–1947 (2008).

    Article  Google Scholar 

  33. C. Perez-Lopez, M. H. De La Torre-Ibarra, and F. M. Santoyo, “Very high speed cw digital holographic interferometry,” Optics Express 14, 9709–9715 (2006).

    Article  ADS  Google Scholar 

  34. S. Schedin, G. Pedrini, H. J. Tiziani, and F. M. Santoyo, “All-fibre pulsed digital holography,” Optics Communications 165, 183–188 (1999).

    Article  ADS  Google Scholar 

  35. G. Pedrini, P. Froning, H. J. Tiziani, and M. E. Gusev, “Pulsed digital holography for high-speed contouring that uses a two-wavelength method,” Applied Optics 38, 3460–3467 (1999).

    Article  ADS  Google Scholar 

  36. C. Perez-Lopez, F. M. Santoyo, G. Pedrini, S. Schedin, and H. J. Tiziani, “Pulsed digital holographic interferometry for dynamic measurement of rotating objects with an optical derotator,” Applied Optics 40, 5106–5110 (2001).

    Article  ADS  Google Scholar 

  37. Z. W. Liu, M. Centurion, G. Panotopoulos, J. Hong, and D. Psaltis, “Holographic recording of fast events on a CCD camera,” Optics Letters 27, 22–24 (2002).

    Article  ADS  Google Scholar 

  38. X. L. Wang, and H. C. Zhai, “Pulsed digital micro-holography of femto-second order by wavelength division multiplexing,” Optics Communications 275, 42–45 (2007).

    Article  ADS  Google Scholar 

  39. X. L. Wang, H. C. Zhai, and G. G. Mu, “Pulsed digital holography system recording ultrafast process of the femtosecond order,” Optics Letters 31, 1636–1638 (2006).

    Article  ADS  Google Scholar 

  40. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Optics Letters 33, 58–60 (2008).

    Article  ADS  Google Scholar 

  41. P. Gabolde, and R. Trebino, “Single-shot measurement of the full spatio-temporal field of ultrashort pulses with multi-spectral digital holography,” Optics Express 14, 11460–11467 (2006).

    Article  ADS  Google Scholar 

  42. P. Gabolde, and R. Trebino, “Single-frame measurement of the complete spatiotemporal intensity and phase of ultrashort laser pulses using wavelength-multiplexed digital holography,” Journal of the Optical Society of America B-Optical Physics 25, A25-A33 (2008).

    Article  ADS  Google Scholar 

  43. X. O. Cai, and H. Wang, “The influence of hologram aperture on speckle noise in the reconstructed image of digital holography and its reduction,” Optics Communications 281, 232–237 (2008).

    Article  ADS  Google Scholar 

  44. T. Nomura, M. Okamura, E. Nitanai, and T. Numata, “Image quality improvement of digital holography by superposition of reconstructed images obtained by multiple wavelengths,” Applied Optics 47, D38-D43 (2008).

    Article  ADS  Google Scholar 

  45. C. G. Quan, X. Kang, and C. J. Tay, “Speckle noise reduction in digital holography by multiple holograms,” Optical Engineering 46, 6 (2007).

    Article  Google Scholar 

  46. J. Maycock, B. M. Hennelly, J. B. McDonald, Y. Frauel, A. Castro, B. Javidi, and T. J. Naughton, “Reduction of speckle in digital holography by discrete Fourier filtering,” Journal of the Optical Society of America a-Optics Image Science and Vision 24, 1617–1622 (2007).

    Article  ADS  Google Scholar 

  47. J. Kuhn, F. Charriere, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, and C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Measurement Science & Technology 19, 074007 (2008).

    Google Scholar 

  48. F. Charriere, B. Rappaz, J. Kuhn, T. Colomb, P. Marquet, and C. Depeursinge, “Influence of shot noise on phase measurement accuracy in digital holographic microscopy,” Optics Express 15, 8818–8831 (2007).

    Article  ADS  Google Scholar 

  49. F. Charriere, T. Colomb, F. Montfort, E. Cuche, P. Marquet, and C. Depeursinge, “Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy,” Applied Optics 45, 7667–7673 (2006).

    Article  ADS  Google Scholar 

  50. J. L. Zhao, P. Zhang, J. B. Zhou, D. X. Yang, D. S. Yang, and E. P. Li, “Visualizations of light-induced refractive index changes in photorefractive crystals employing digital holography,” Chin. Phys. Lett. 20, 1748–1751 (2003).

    Article  ADS  Google Scholar 

  51. V. Apostolopoulos, L. Laversenne, T. Colomb, C. Depeursinge, R. P. Salathe, M. Pollnau, R. Osellame, G. Cerullo, and P. Laporta, “Femtosecond-irradiation-induced refractive-index changes and channel waveguiding in bulk Ti3+: Sapphire,” Applied Physics Letters 85, 1122–1124 (2004).

    Article  ADS  Google Scholar 

  52. R. Osellame, N. Chiodo, V. Maselli, A. Yin, M. Zavelani-Rossi, G. Cerullo, P. Laporta, L. Aiello, S. De Nicola, P. Ferraro, A. Finizio, and G. Pierattini, “Optical properties of waveguides written by a 26 MHz stretched cavity Ti : sapphire femtosecond oscillator,” Optics Express 13, 612–620 (2005).

    Article  ADS  Google Scholar 

  53. S. De Nicola, P. Ferraro, A. Finizio, S. Grilli, G. Coppola, M. Iodice, P. De Natale, and M. Chiarini, “Surface topography of microstructures in lithium niobate by digital holographic microscopy,” Measurement Science & Technology 15, 961–968 (2004).

    Article  ADS  Google Scholar 

  54. S. Grilli, P. Ferraro, M. Paturzo, D. Alfieri, and P. De Natale, “In-situ visualization, monitoring and analysis of electric field domain reversal process in ferroelectric crystals by digital holography,” Optics Express 12, 1832–1842 (2004).

    Article  ADS  Google Scholar 

  55. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, L. Sansone, D. Alfieri, and P. De Natale, “Two-dimensional mapping of electro-optic phase retardation in lithium niobate crystals by digital holography,” Optics Letters 30, 1671–1673 (2005).

    Article  ADS  Google Scholar 

  56. S. Grilli, M. Paturzo, L. Miccio, and P. Ferraro, “In situ investigation of periodic poling in congruent LiNbO3 by quantitative interference microscopy,” Measurement Science & Technology 19, 7 (2008).

    Article  Google Scholar 

  57. M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Pelli, G. Righini, and S. Sebastiani, “Digital-holography refractive-index-profile measurement of phase gratings,” Applied Physics Letters 88, 3 (2006).

    Google Scholar 

  58. M. Paturzo, P. Ferraro, S. Grilli, D. Alfieri, P. De Natale, M. de Angelis, A. Finizio, S. De Nicola, G. Pierattini, F. Caccavale, D. Callejo, and A. Morbiato, “On the origin of internal field in Lithium Niobate crystals directly observed by digital holography,” Optics Express 13, 5416–5423 (2005).

    Article  ADS  Google Scholar 

  59. M. Paturzo, L. Miccio, S. De Nicola, P. De Natale, and P. Ferraro, “Amplitude and phase reconstruction of photorefractive spatial bright-soliton in LiNbO3 during its dynamic formation by digital holography,” Optics Express 15, 8243–8251 (2007).

    Article  ADS  Google Scholar 

  60. F. Merola, L. Miccio, M. Paturzo, S. De Nicola, and P. Ferraro, “Full characterization of the photorefractive bright soliton formation process using a digital holographic technique,” Measurement Science & Technology 20, 045301 (2009).

    Article  ADS  Google Scholar 

  61. Y. Pu, M. Centurion, and D. Psaltis, “Harmonic holography: a new holographic principle,” Applied Optics 47, A103-A110 (2008).

    Article  ADS  Google Scholar 

  62. E. Shaffer, N. Pavillon, J. Kuhn, and C. Depeursinge, “Digital holographic microscopy investigation of second harmonic generated at a glass/air interface,” Optics Letters 34, 2450–2452 (2009).

    Article  ADS  Google Scholar 

  63. C.-L. Hsieh, R. Grange, Y. Pu, and D. Psaltis, “Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging,” Opt. Express 17, 2880–2891 (2009).

    Article  ADS  Google Scholar 

  64. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Label-free second harmonic generation holographic microscopy of biological specimens,” Optics Express 18, 9840–9851 (2010).

    Article  ADS  Google Scholar 

  65. E. Shaffer, P. Marquet, and C. Depeursinge, “Real time, nanometric 3D-tracking of nanoparticles made possible by second harmonic generation digital holographic microscopy,” Optics Express 18, 17392–17403 (2010).

    Article  Google Scholar 

  66. C. Barsi, W. J. Wan, and J. W. Fleischer, “Imaging through nonlinear media using digital holography,” Nat. Photonics 3, 211–215 (2009).

    Article  ADS  Google Scholar 

  67. M. Cui, and C. H. Yang, “Implementation of a digital optical phase conjugation system and its application to study the robustness of turbidity suppression by phase conjugation,” Optics Express 18, 3444–3455 (2010).

    Article  ADS  Google Scholar 

  68. C. L. Hsieh, Y. Pu, R. Grange, and D. Psaltis, “Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media,” Optics Express 18, 12283–12290 (2010).

    Article  Google Scholar 

  69. I. Yamaguchi, T. Matsumura, and J. Kato, “Phase-shifting color digital holography,” Optics Letters 27, 1108–1110 (2002).

    Article  ADS  Google Scholar 

  70. J. Kato, I. Yamaguchi, and T. Matsumura, “Multicolor digital holography with an achromatic phase shifter,” Optics Letters 27, 1403–1405 (2002).

    Article  ADS  Google Scholar 

  71. J. L. Zhao, H. Z. Jiang, and J. L. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Optics Express 16, 2514–2519 (2008).

    Article  ADS  Google Scholar 

  72. B. Javidi, P. Ferraro, S. H. Hong, S. De Nicola, A. Finizio, D. Alfieri, and G. Pierattini, “Three-dimensional image fusion by use of multiwavelength digital holography,” Optics Letters 30, 144–146 (2005).

    Article  ADS  Google Scholar 

  73. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, and B. Javidi, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Disp. Technol. 4, 97–100 (2008).

    Article  ADS  Google Scholar 

  74. P. Almoro, M. Cadatal, W. Garcia, and C. Saloma, “Pulsed full-color digital holography with a hydrogen Raman shifter,” Applied Optics 43, 2267–2271 (2004).

    Article  ADS  Google Scholar 

  75. P. Tankam, P. Picart, D. Mounier, J. M. Desse, and J. C. Li, “Method of digital holographic recording and reconstruction using a stacked color image sensor,” Applied Optics 49, 320–328 (2010).

    Article  ADS  Google Scholar 

  76. J. Kuhn, T. Colomb, F. Montfort, F. Charriere, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Optics Express 15, 7231–7242 (2007).

    Article  ADS  Google Scholar 

  77. A. Khmaladze, M. Kim, and C. M. Lo, “Phase imaging of cells by simultaneous dual-wavelength reflection digital holography,” Optics Express 16, 10900–10911 (2008).

    Article  ADS  Google Scholar 

  78. T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, “Polarization Holography.3. Some Applications of Polarization Holographic Recording,” Applied Optics 24, 785–788 (1985).

    Article  ADS  Google Scholar 

  79. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Applied Optics 41, 27–37 (2002).

    Article  ADS  Google Scholar 

  80. T. Nomura, B. Javidi, S. Murata, E. Nitanai, and T. Numata, “Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography,” Optics Letters 32, 481–483 (2007).

    Article  ADS  Google Scholar 

  81. T. Colomb, E. Cuche, F. Montfort, P. Marquet, and C. Depeursinge, “Jones vector imaging by use of digital holography: simulation and experimentation,” Optics Communications 231, 137–147 (2004).

    Article  ADS  Google Scholar 

  82. M. Yokota, Y. Terui, and I. Yamaguchi, “Analysis of polarization state by digital holography with polarization modulation,” Opt. Rev. 13, 405–409 (2006).

    Article  Google Scholar 

  83. T. Colomb, F. Durr, E. Cuche, P. Marquet, H. G. Limberger, R. P. Salathe, and C. Depeursinge, “Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements,” Applied Optics 44, 4461–4469 (2005).

    Article  ADS  Google Scholar 

  84. E. Allaria, S. Brugioni, S. De Nicola, P. Ferraro, S. Grilli, and R. Meucci, “Digital holography at 10.6 mu m,” Optics Communications 215, 257–262 (2003).

    Article  ADS  Google Scholar 

  85. S. De Nicola, P. Ferraro, S. Grilli, L. Miccio, R. Meucci, P. K. Buah-Bassuah, and F. T. Arecchi, “Infrared digital reflective-holographic 3D shape measurements,” Optics Communications 281, 1445–1449 (2008).

    Article  ADS  Google Scholar 

  86. N. George, K. Khare, and W. Chi, “Infrared holography using a microbolometer array,” Applied Optics 47, A7–A12 (2008).

    Article  ADS  Google Scholar 

  87. L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Optics Communications 251, 44–50 (2005).

    Article  ADS  Google Scholar 

  88. R. J. Mahon, J. A. Murphy, and W. Lanigan, “Digital holography at millimetre wavelengths,” Optics Communications 260, 469–473 (2006).

    Article  ADS  Google Scholar 

  89. H. Yu, “Microwave holography measurement and adjustment of 25-m radio telescope of Shanghai,” Microw. Opt. Technol. Lett. 49, 467–470 (2007).

    Article  Google Scholar 

  90. Y. Zhang, W. Zhou, X. Wang, Y. Cui, and W. Sun, “Terahertz digital holography,” Strain 44, 380–385 (2008).

    Article  Google Scholar 

  91. X. K. Wang, L. Hou, and Y. Zhang, “Continuous-wave terahertz interferometry with multiwavelength phase unwrapping,” Applied Optics 49, 5095–5102 (2010).

    Article  ADS  Google Scholar 

  92. A. S. Morlens, J. Gautier, G. Rey, P. Zeitoun, J. P. Caumes, M. Kos-Rosset, H. Merdji, S. Kazamias, K. Casson, and M. Fajardo, “Submicrometer digital in-line holographic microscopy at 32 nm with high-order harmonics,” Optics Letters 31, 3095–3097 (2006).

    Article  ADS  Google Scholar 

  93. G. Pedrini, F. C. Zhang, and W. Osten, “Digital holographic microscopy in the deep (193 nm) ultraviolet,” Applied Optics 46, 7829–7835 (2007).

    Article  ADS  Google Scholar 

  94. A. Rosenhahn, R. Barth, F. Staier, T. Simpson, S. Mittler, S. Eisebitt, and M. Grunze, “Digital in-line soft x-ray holography with element contrast,” Journal of the Optical Society of America a-Optics Image Science and Vision 25, 416–422 (2008).

    Article  ADS  Google Scholar 

  95. I. McNulty, J. Kirz, C. Jacobsen, E. H. Anderson, M. R. Howells, and D. P. Kern, “High-Resolution Imaging by Fourier-Transform X-Ray Holography,” Science 256, 1009–1012 (1992).

    Article  ADS  Google Scholar 

  96. S. Eisebitt, J. Luning, W. F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, and J. Stohr, “Lensless imaging of magnetic nanostructures by X-ray spectro-holography,” Nature 432, 885–888 (2004).

    Article  ADS  Google Scholar 

  97. C. Fuhse, C. Ollinger, and T. Salditt, “Waveguide-based off-axis holography with hard x rays,” Physical Review Letters 97, 4 (2006).

    Article  Google Scholar 

  98. G. Faigel, and M. Tegze, “X-ray holography,” Reports on Progress in Physics 62, 355–393 (1999).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myung K. Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, M.K. (2011). Special Techniques of Digital Holography. In: Digital Holographic Microscopy. Springer Series in Optical Sciences, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7793-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7793-9_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7792-2

  • Online ISBN: 978-1-4419-7793-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics