Abstract

Non-steady crack propagation is a non-equilibrium thermodynamic process. The application of the maximum dissipation construction to fracture mechanics provides an example in which the critical manifold represents neither thermostatic nor steady states. In this case, it is a set of states satisfying a critical condition or event, and the set may be either an attractor or a repeller depending on whether the crack propagation is stable or unstable. In unstable propagation, the non-equilibrium process is repelled from the quasi-static critical manifold. If the initial state is stable, then the crack growth process approaches the quasi-static critical manifold and eventually the crack is arrested. The maximum dissipation non-equilibrium evolution model describes the non-steady, crack propagation rate for both brittle fracture and for viscoplastic behavior at the crack tip. The class of models produced includes the classical Freund model and a modification that is consistent with the experimental maximum crack velocity. Further, the thermodynamic relaxation modulus for brittle fracture has a physical interpretation in terms of the microscopic response of the material. An application of the construction gives the craze growth in PMMA. A simple viscoplastic model for metals predicts the change in temperature at the crack tip as the crack grows.

Keywords

Entropy Manifold Rubber Brittle Polystyrene 

References

  1. A. Berezovski and G. A. Maugin (2007). On the propagation velocity of a straight brittle crack. International Journal of Fracture 143, 135–142.MATHCrossRefGoogle Scholar
  2. H. D. Bui, A. Ehrlacher, and Q. S. Nguyen (1980). Propagation de fissure en thermoélasticité dynamique. Journal de Mécanique 19, 697–723.MathSciNetMATHGoogle Scholar
  3. R. Christensen and Y. Miyano (2007). Deterministic and probabilistic lifetimes from kinetic crack growth - generalized forms. International Journal of Fracture 143, 35–39.MATHCrossRefGoogle Scholar
  4. J. W. Dally, W. L. Fourney, and G. R. Irwin (1985). On the uniqueness of the stress intensity factor - crack velocity relationship. International Journal of Fracture 27, 159–165.CrossRefGoogle Scholar
  5. W. Döll (1976). Application of an energy balance and an energy method to dynamic crack propagation. International Journal of Fracture 12(4), 595–605.Google Scholar
  6. W. Döll (1984). Kinetics of crack tip craze zone before and during fracture. Polymer Engineering and Science 24(10), 798–808.CrossRefGoogle Scholar
  7. W. Döll, L. Könczöl, and M. G. Schinker (1981). Zur zeit- und temperaturabhängigen Vertreckung von Polymermaterial vor Rißspitzen bei langzeiter statischer Belastung. Colloid and Polymer Science 259, 171–181.CrossRefGoogle Scholar
  8. L. B. Freund (1990). Dynamic Fracture Mechanics. Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  9. K. N. G. Fuller, P. G. Fox, and J. E. Field (1975). The temperature rise at the tip of fast-moving cracks in glassy polymers. Proceedings of the Royal Society of London A341, 537–557.Google Scholar
  10. H. Gao (1996). A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1453–1474.CrossRefGoogle Scholar
  11. A. A. Griffith (1921). The phenomena of rupture and flow in solids. Philosophical Transactions Royal Society of London A221, 163–198.Google Scholar
  12. A. A. Griffith (1924). The theory of rupture. Proceedings of the First International Congress for Applied Mechanics, Delft, 55–63.Google Scholar
  13. M. E. Gurtin (1979). Thermodynamics and the Griffith criterion for brittle fracture. International Journal for Solids and Structures 15, 553–560.MathSciNetMATHCrossRefGoogle Scholar
  14. M. E. Gurtin (2000). Configurational Forces as Basic Concepts of Continuum Physics, Springer, New York, NY.Google Scholar
  15. H. W. Haslach, Jr. (2002). A non-equilibrium thermodynamic geometric structure for thermoviscoplasticity with maximum dissipation. International Journal of Plasticity 18, 127–153.MATHCrossRefGoogle Scholar
  16. H. W. Haslach, Jr. (2010). A non-equilibrium thermodynamic model for the crack propagation rate. Mechanics of Time-Dependent Materials 14(1), 91–110. DOI: 10.1007/s11043-009-9094-9CrossRefGoogle Scholar
  17. K. Hellan (1984). Introduction to Fracture Mechanics, McGraw-Hill Book Company, New York, NY.Google Scholar
  18. J. Lemaitre and J.-L. Chaboche (1990). Mechanics of Solid Materials, Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  19. G. A. Maugin (1992). The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge.MATHCrossRefGoogle Scholar
  20. W. Muschik, W. and A. Berezovski (2004). Thermodynamic interaction between two discrete systems in non-equilibrium. Journal of Non-equilibrium Thermodynamics 29, 237–255.MATHCrossRefGoogle Scholar
  21. K. Ravi-Chandar (2004). Dynamic Fracture, Elsevier, AmsterdamGoogle Scholar
  22. K. Ravi-Chandar and W. G. Knauss (1984). An experimental investigation into dynamic fracture - III. Steady state crack propagation and crack branching. International Journal of Fracture 26, 141–154.CrossRefGoogle Scholar
  23. J. R. Rice (1978). Thermodynamics of the quasi-static growth of Griffith cracks. Journal of the Mechanics and Physics of Solids 26, 61–78.MATHCrossRefGoogle Scholar
  24. L. I. Slepyan (1993). Principle of maximum energy dissipation rate in crack dynamics. Journal of the Mechanics and Physics of Solids 41, 1019–1033.MATHCrossRefGoogle Scholar
  25. R. Weichert and K. Schönert (1974). On the temperature rise at the tip of a fast running crack. Journal of the Mechanics and Physics of Solids 22, 127–133.CrossRefGoogle Scholar
  26. R. Weichert and K. Schönert (1978). Heat generation at the tip of a moving crack. Journal of the Mechanics and Physics of Solids 26, 151–161.CrossRefGoogle Scholar
  27. J. G. Williams (1965). The thermal properties of a plastic zone. Applied Materials Research 4, 104–106.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MarylandCollege ParkUSA

Personalised recommendations