Skip to main content
  • 1202 Accesses

Abstract

Non-steady crack propagation is a non-equilibrium thermodynamic process. The application of the maximum dissipation construction to fracture mechanics provides an example in which the critical manifold represents neither thermostatic nor steady states. In this case, it is a set of states satisfying a critical condition or event, and the set may be either an attractor or a repeller depending on whether the crack propagation is stable or unstable. In unstable propagation, the non-equilibrium process is repelled from the quasi-static critical manifold. If the initial state is stable, then the crack growth process approaches the quasi-static critical manifold and eventually the crack is arrested. The maximum dissipation non-equilibrium evolution model describes the non-steady, crack propagation rate for both brittle fracture and for viscoplastic behavior at the crack tip. The class of models produced includes the classical Freund model and a modification that is consistent with the experimental maximum crack velocity. Further, the thermodynamic relaxation modulus for brittle fracture has a physical interpretation in terms of the microscopic response of the material. An application of the construction gives the craze growth in PMMA. A simple viscoplastic model for metals predicts the change in temperature at the crack tip as the crack grows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Berezovski and G. A. Maugin (2007). On the propagation velocity of a straight brittle crack. International Journal of Fracture 143, 135–142.

    Article  MATH  Google Scholar 

  • H. D. Bui, A. Ehrlacher, and Q. S. Nguyen (1980). Propagation de fissure en thermoélasticité dynamique. Journal de Mécanique 19, 697–723.

    MathSciNet  MATH  Google Scholar 

  • R. Christensen and Y. Miyano (2007). Deterministic and probabilistic lifetimes from kinetic crack growth - generalized forms. International Journal of Fracture 143, 35–39.

    Article  MATH  Google Scholar 

  • J. W. Dally, W. L. Fourney, and G. R. Irwin (1985). On the uniqueness of the stress intensity factor - crack velocity relationship. International Journal of Fracture 27, 159–165.

    Article  Google Scholar 

  • W. Döll (1976). Application of an energy balance and an energy method to dynamic crack propagation. International Journal of Fracture 12(4), 595–605.

    Google Scholar 

  • W. Döll (1984). Kinetics of crack tip craze zone before and during fracture. Polymer Engineering and Science 24(10), 798–808.

    Article  Google Scholar 

  • W. Döll, L. Könczöl, and M. G. Schinker (1981). Zur zeit- und temperaturabhängigen Vertreckung von Polymermaterial vor Rißspitzen bei langzeiter statischer Belastung. Colloid and Polymer Science 259, 171–181.

    Article  Google Scholar 

  • L. B. Freund (1990). Dynamic Fracture Mechanics. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • K. N. G. Fuller, P. G. Fox, and J. E. Field (1975). The temperature rise at the tip of fast-moving cracks in glassy polymers. Proceedings of the Royal Society of London A341, 537–557.

    Google Scholar 

  • H. Gao (1996). A theory of local limiting speed in dynamic fracture. Journal of the Mechanics and Physics of Solids 44, 1453–1474.

    Article  Google Scholar 

  • A. A. Griffith (1921). The phenomena of rupture and flow in solids. Philosophical Transactions Royal Society of London A221, 163–198.

    Google Scholar 

  • A. A. Griffith (1924). The theory of rupture. Proceedings of the First International Congress for Applied Mechanics, Delft, 55–63.

    Google Scholar 

  • M. E. Gurtin (1979). Thermodynamics and the Griffith criterion for brittle fracture. International Journal for Solids and Structures 15, 553–560.

    Article  MathSciNet  MATH  Google Scholar 

  • M. E. Gurtin (2000). Configurational Forces as Basic Concepts of Continuum Physics, Springer, New York, NY.

    Google Scholar 

  • H. W. Haslach, Jr. (2002). A non-equilibrium thermodynamic geometric structure for thermoviscoplasticity with maximum dissipation. International Journal of Plasticity 18, 127–153.

    Article  MATH  Google Scholar 

  • H. W. Haslach, Jr. (2010). A non-equilibrium thermodynamic model for the crack propagation rate. Mechanics of Time-Dependent Materials 14(1), 91–110. DOI: 10.1007/s11043-009-9094-9

    Article  Google Scholar 

  • K. Hellan (1984). Introduction to Fracture Mechanics, McGraw-Hill Book Company, New York, NY.

    Google Scholar 

  • J. Lemaitre and J.-L. Chaboche (1990). Mechanics of Solid Materials, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • G. A. Maugin (1992). The Thermomechanics of Plasticity and Fracture, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • W. Muschik, W. and A. Berezovski (2004). Thermodynamic interaction between two discrete systems in non-equilibrium. Journal of Non-equilibrium Thermodynamics 29, 237–255.

    Article  MATH  Google Scholar 

  • K. Ravi-Chandar (2004). Dynamic Fracture, Elsevier, Amsterdam

    Google Scholar 

  • K. Ravi-Chandar and W. G. Knauss (1984). An experimental investigation into dynamic fracture - III. Steady state crack propagation and crack branching. International Journal of Fracture 26, 141–154.

    Article  Google Scholar 

  • J. R. Rice (1978). Thermodynamics of the quasi-static growth of Griffith cracks. Journal of the Mechanics and Physics of Solids 26, 61–78.

    Article  MATH  Google Scholar 

  • L. I. Slepyan (1993). Principle of maximum energy dissipation rate in crack dynamics. Journal of the Mechanics and Physics of Solids 41, 1019–1033.

    Article  MATH  Google Scholar 

  • R. Weichert and K. Schönert (1974). On the temperature rise at the tip of a fast running crack. Journal of the Mechanics and Physics of Solids 22, 127–133.

    Article  Google Scholar 

  • R. Weichert and K. Schönert (1978). Heat generation at the tip of a moving crack. Journal of the Mechanics and Physics of Solids 26, 151–161.

    Article  Google Scholar 

  • J. G. Williams (1965). The thermal properties of a plastic zone. Applied Materials Research 4, 104–106.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry W. Haslach Jr .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Haslach, H.W. (2011). Fracture. In: Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7765-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7765-6_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7764-9

  • Online ISBN: 978-1-4419-7765-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics