Skip to main content

Thermoelectric Cooling Through Thermoelectric Materials

  • Chapter
  • First Online:
Book cover Advanced Materials for Thermal Management of Electronic Packaging

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 30))

Abstract

Thermoelectric (TE) cooling has been used for thermal management of high-power-dissipating electrical components, with silent, compact, reliable, and durable characteristics and being modulated to maintain a fixed temperature. However, TE coolers currently in use have a coefficient of performance (COP) of only about 0.5. This is quite a low value compared with COPs of other cooling approaches such as air conditioners and refrigerators at levels of 3.0–5.0. With increasing demands for high performance thermoelectric coolers, advanced emerging TE materials provide probability for improving their efficiency. These emerging materials include new families of advanced bulk TE materials based on crystal structures that contain weakly bound atoms or molecules with large vibrational amplitudes at partially filled structural sites acting as effective phonon scatterers, such as skutterudites, clathrates, and oxides; low dimensional materials systems, such as quantum well superlattices, quantum wires, quantum dots, thin film or band engineering structures; as well as nanocomposites, which demonstrates much higher ZT values than that of their bulk counterparts. The nanocomposites can be fabricated inexpensively, quickly, and in a form that is compatible with existing TE device configurations. Further research in this field will allow TE cooling to play a significant role in any future thermal management solution. This chapter will review the principle, design, and application of the TE cooling, as well as the effects of the emerging novel TE materials on its efficiency. The main contents include TE effects, design methodology and multistage architecture of TE cooling devices, and advanced TE materials and future development trends.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bar-Cohen A, Solbrekken GL, Yazawa K (2005) Thermoelectric powered convective cooling of microprocessors. IEEE Trans. Adv. Packag. 28(2): 231–239.

    Article  Google Scholar 

  • Bass JC, Allen DT, Ghamaty S, and Elsner NB (2004) New technology for thermoelectric cooling. 20th IEEE SEMI-THERM Symposium. http://www.hi-z.com/papers/IECEC 2004.pdf Accessed on 27 June 2010.

  • Boukai A et al (2008) Silicon nanowires as efficient thermoelectric materials. Nat. Lett. 451: 168–171.

    Article  ADS  Google Scholar 

  • Buit RJ (1980) A simplified method for thermoelectric heat pump optimization. Third International Conference on Thermoelectric Energy Conversion, Arlington, Texas, May 12–14, 1980.

    Google Scholar 

  • Bulusu A, Walker D (2008) Review of electronic transport models for thermoelectric materials. Superlattices Microstruct. 44: 1–36.

    Article  ADS  Google Scholar 

  • Chakoumakos BC, Sales BC, Mandrus D, Keppens V (1999) Disparate atomic displacements in skutterudite-type LaFe3CoSb12, a model for thermoelectric behavior. Acta Crystallogr. B. 55: 341–347.

    Article  Google Scholar 

  • Chein R, Huang G (2004) Thermoelectric cooler application in electronic cooling. Appl. Therm. Eng. 24(14–15): 2207–2217.

    Article  Google Scholar 

  • Cui Y (2009) Thermoelectric materials: ternary and higher oxides and tellurides. Ph.D thesis. University of Waterloo, Waterloo, Ontario, Canada. https://www.uwspace.uwaterloo.ca/bitstream/10012/4893/1/Cui_Yanjie.pdf. Accessed on 25 June 2010.

  • Da Silva LW et al (2003) Micro thermoelectric cooler fabrication: Growth and characterization of patterned Sb2Te3 and Bi2Te3 films. Proceeding of the 22nd International Conference on Thermoelectrics. La Grande-Motte, France, 2003, pp. 665–668.

    Google Scholar 

  • Dresselhaus M (2009) Perspectives on recent advances in thermoelectric materials research. http://www1.eere.energy.gov/vehiclesandfuels/pdfs/thermoelectrics_app_2009/wednesday/dresselhauss.pdf. Accessed on 30 June 2010.

  • Dresselhaus MS et al (2005) New directions for nanoscale thermoelectric materials research. http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/39339/1/05-3896.pdf. Accessed on 18 June 2010.

  • Dresselhaus MS et al (2007) New directions for low-dimensional thermoelectric materials. Adv. Mater. 19: 1–12.

    Article  Google Scholar 

  • Ezzahri Y et al (2008) A comparison of thin film microrefrigerators based on Si/SiGe superlattice and bulk SiGe. Microelectronics J. 39: 981–991.

    Article  Google Scholar 

  • Ferrotec (2010) Thermoelectric technical reference – Introduction to thermoelectric cooling. http://www.ferrotec.com/technology/thermoelectric/thermalRef01/. Accessed on 26 June 2010.

  • Goldsmid H (1986) Electronic refrigeration. Pion, London.

    Google Scholar 

  • Harman T, Taylor P, Walsh M, LaForge B (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297: 2229–2232.

    Article  ADS  Google Scholar 

  • Hochbaum A et al (2008) Enhanced thermoelectric performance of rough silicon nanowires. Nat. Lett. 451: 163–167.

    Article  ADS  Google Scholar 

  • Hornbostel MD et al (1997) Systematic study of new rare earth element–iron–antimony skutterudites synthesized using multilayer precursors. Inorg. Chem. 36: 4270–4274.

    Article  Google Scholar 

  • Kim DS, Ferreira CAI (2008) Solar refrigeration options – A state-of-the-art review. Int. J. Refrig. 31: 3–15.

    Article  Google Scholar 

  • Kimmel J (1999) Thermoelectric materials. http://physics.ucsd.edu/~phy152/ther.pdf. Accessed on 23 June 2010.

  • Luo X et al (2002) Electronic applications of flexible graphite. J. Electron. Mater. 31: 534–544.

    ADS  Google Scholar 

  • Madsen GKH, Singh DJ (2006) Boltz TraP: A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175: 67–71.

    Article  ADS  MATH  Google Scholar 

  • Marlow Industries, Inc. (1998) Thermoelectric cooling systems design guide. http://www.lot-oriel.com/site/site_down/marlow_designguide_it01.pdf. Accessed on 28 June 2010.

  • Minnich AJ, Dresselhaus MS, Ren ZF, Chen G (2009) Bulk nanostructured thermoelectric materials: Current research and future prospects. Energy Environ. Sci. 2: 466–479.

    Article  Google Scholar 

  • Nolas GS, Morelli DT, Tritt TM (1999) Skutterudites: A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu. Rev. Mater. Sci. 29: 89–116.

    Article  ADS  Google Scholar 

  • Nolas GS, Sharp J, Goldsmid HJ (2001a) Thermoelectrics: Basic principles and new materials developments. Springer-Verlag, Berlin

    MATH  Google Scholar 

  • Nolas GS, Goldsmid H, Sharp J (2001b) Thermoelectrics: Basic principles and new materials developments. Springer, New York.

    MATH  Google Scholar 

  • Ohtaki M (2002) Oxide thermoelectric materials: An overview with some historical and strategic perspectives. Oxide thermoelectrics 2002, pp. 159–180. Research signpost, Trivandrum, INDE (2002) (Monographie).

    Google Scholar 

  • Ohta T, Kajikawa T, Uesuqi T, Tokiai T (1992) Thermoelectric material and process for production thereof. US Patent 5108515.

    Google Scholar 

  • Roberts RB (1977) Absolute scale of thermoelectricity. Nature 265: 226–227.

    Article  ADS  Google Scholar 

  • Rowe DM (1994) CRC handbook of thermoelectrics, CRC Press, Boca Raton.

    Google Scholar 

  • Sales BC (2003) Filled skutterudites. In Handbook on the physics and chemistry of rare earths. Vol. 33. edited by K.A. Gschneidner Jr., J.C.G. Bilnzli and V.K. Pecharsky. Elsevier Science B.V., Amsterdam.

    Google Scholar 

  • Sales BC, Mandrus D, Williams RK (1996) Filled skutterudite antimonides: A new class of thermoelectric materials. Science 272: 1325–1328.

    Article  ADS  Google Scholar 

  • Sales BC, Mandrus D, Chakoumakos BC, Keppens V, Thompson JR (1997) Filled skutterudite antimonides: Electron crystals and phonon glasses. Phys. Rev. B. 56: 15081–15089.

    Article  ADS  Google Scholar 

  • Sekine C, Uchiumi T, Shirotani I, Yagi T (1997) Metal-insulator transition in PrRu 4 P 12 with skutterudite structure. Phys. Rev. Lett. 79: 3218–3221.

    Article  ADS  Google Scholar 

  • Senthilkumar M, Vijayaraghavan R (2009) High-temperature resistivity and thermoelectric properties of coupled substituted Ca3Co2O6. Sci. Technol. Adv. Mater. 10: 1–5.

    Article  Google Scholar 

  • Shirotani I, Adachi T, Tachi K, Todo S, Nozawa K, Yagi T, Kinoshita M (1996) Electrical conductivity and superconductivity of metal phosphides with skutterudite-type structure prepared at high pressure. J. Phys. Chem. Solids 57: 211.

    Article  ADS  Google Scholar 

  • Shirotani I et al (1997) Superconductivity of filled skutterudites LaRu4As12 and PrRu4As12. Phys. Rev. B. 56: 7866–7869.

    Article  ADS  Google Scholar 

  • Simons RE, Chu RC (2000) Application of thermoelectric cooling to electronic equipment: A review and analysis. Annual IEEE Semiconductor Thermal Measurement and Management Symposium 19: 1–9.

    Google Scholar 

  • Tervo J, Manninen A, Ilola R, Hänninen H (2009) State-of-the-art of thermoelectric materials processing. http://www.vtt.fi/inf/pdf/workingpapers/2009/W124.pdf. Accessed on 28 June 2010.

  • Thiagarajan SJ, Wang W, Yang R (2009) Nanocomposites as high efficiency thermoelectric materials. http://spot.colorado.edu/~yangr/Publications/Yang_Thermoelectric_Nanocomposites_Annul_Review_of_Nanoresearch_2009_Final.pdf. Accessed on 29 June 2010.

  • Uchiumi T et al (1999) Superconductivity of LaRu4X12 (X = P, As and Sb) with skutterudite structure. J. Phys. Chem. Solids 60: 689.

    Article  ADS  Google Scholar 

  • Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413: 597–602.

    Article  ADS  Google Scholar 

  • Watcharapasorn A et al (2002) Preparation and thermoelectric properties of CeFe4As12. J. Appl. Phys. 91: 1344.

    Article  ADS  Google Scholar 

  • Yang R, Chen G (2005) Nanostructured thermoelectric materials: From superlattice to nanocomposites. http://spot.colorado.edu/~yangr/Publications/J8_MaterialIntegration.pdf. Accessed on 29 June 2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingcun Colin Tong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tong, X.C. (2011). Thermoelectric Cooling Through Thermoelectric Materials. In: Advanced Materials for Thermal Management of Electronic Packaging. Springer Series in Advanced Microelectronics, vol 30. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7759-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7759-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7758-8

  • Online ISBN: 978-1-4419-7759-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics