Antioxidant Properties of Quercetin

  • Mei Zhang
  • Steven G. Swarts
  • Liangjie Yin
  • Chaomei Liu
  • Yeping Tian
  • Yongbing Cao
  • Michael Swarts
  • Shanmin Yang
  • Steven B. Zhang
  • Kunzhong Zhang
  • Shaoqing Ju
  • David J. OlekJr.
  • Lisa Schwartz
  • Peter C. Keng
  • Rob Howell
  • Lurong Zhang
  • Paul Okunieff
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 701)

Abstract

Quercetin, a plant-derived aglycone form of flavonoid glycosides, has been used as a nutritional supplement and may be beneficial against a variety of diseases, including cancer. We examined the antioxidant properties of quercetin. The reduction potential of quercetin was measured at various pH values using voltammetric methods, and its total antioxidant capacity (TAC) was measured using the phosphomolybdenum method. The effect of quercetin on production of reactive oxygen species (ROS) and nitric oxide (NO) in LPS-stimulated human THP-1 acute monocytic leukemia cells was determined by flow cytometry using CM-H2DCFDA dye. The results were compared with curcumin, a natural product exhibiting a similar range of reported health benefits. Results: 1) Quercetin has a higher reduction potential compared with curcumin at three different pH settings and is comparable to Trolox at pH 7-9.5; 2) its TAC is 3.5 fold higher than curcumin; 3) it reduced LPS-induced ROS to near normal levels; 4) it reduced LPS-induced NO production. These data provide a physico-chemical basis for comparing antioxidants, with potential benefits individually or in combination.

Keywords

DMSO Curcumin Glycoside Quercetin Auger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50(1):1-7PubMedCrossRefGoogle Scholar
  2. 2.
    Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269(2): 315-325PubMedCrossRefGoogle Scholar
  3. 3.
    Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839-4854PubMedCrossRefGoogle Scholar
  4. 4.
    Labinskyy N, Csiszar A, Veress G, et al (2006) Vascular dysfunction in aging: potential effects of resveratrol, an anti-inflammatory phytoestrogen. Curr Med Chem 13:989-996.PubMedCrossRefGoogle Scholar
  5. 5.
    Yang JY, Della-Fera MA, Rayalam S, et al (2008) Enhanced inhibition of adipogenesis and induction of apoptosis in 3T3-L1 adipocytes with combinations of resveratrol and quercetin. Life Sci 82(19-20):1032-1039PubMedCrossRefGoogle Scholar
  6. 6.
    Nam NH (2006) Naturally occurring NF-kappaB inhibitors. Med Chem 6:945-951Google Scholar
  7. 7.
    Teixeira S (2002) Bioflavonoids: proanthocyanidins and quercetin and their potential roles in treating musculoskeletal conditions. J Orthop Sports Phys Ther 32(7):357-363.PubMedGoogle Scholar
  8. 8.
    García-Mediavilla V, Crespo I, Collado PS, et al (2007) The anti-inflammatory flavones quercetin and kaempferol cause inhibition of inducible nitric oxide synthase, cyclooxygenase-2 and reactive C-protein, and down-regulation of the nuclear factor kappaB pathway in Chang Liver cells. Eur J Pharmacol 557(2-3):221-229PubMedCrossRefGoogle Scholar
  9. 9.
    Karbarz M, Malyszko J (2008) Voltammetric behavior of trolox in methanol and ethanol solutions. Electroanalysis 20(17):1884-1890CrossRefGoogle Scholar
  10. 10.
    Malyszko J, Karbarz M (2006) Electrochemical oxidation of trolox and a-tocopherol in acetic acid: A comparative study. J Electroanal Chem 595:136-144CrossRefGoogle Scholar
  11. 11.
    Timbola AK, de Souza CD, Giacomelli C, et al (2006) Electrochemical oxidation of quercetin in hydroalcoholic solution. J Braz Chem Soc 17:139-148CrossRefGoogle Scholar
  12. 12.
    Jovanovic SV, Steenken S, BooneCW, et al (1999) H-Atom Transfer IsAPreferred Antioxidant Mechanism of Curcumin. J Am Chem Soc 121:9677-9681Google Scholar
  13. 13.
    Mullen W, Rouanet JM, Auger C, et al (2008) Bioavailability of [2-(14)C]quercetin-4’- glucoside in rats. J Agric Food Chem 2456(24):12127-12137.CrossRefGoogle Scholar
  14. 14.
    Verschoyle RD, Steward WP, Gescher AJ (2007) Putative cancer chemopreventive agents of dietary origin-how safe are they? Nutr Cancer 59(2):152-162.PubMedCrossRefGoogle Scholar
  15. 15.
    van der Woude H, Alink GM, van Rossum BE, et al (2005) Formation of transient covalent protein and DNA adducts by quercetin in cells with and without oxidative enzyme activity. Chem Res Toxicol 18(12):1907-1916PubMedCrossRefGoogle Scholar
  16. 16.
    Sun W,WangW,Kim J, et al (2008) Anti-cancer effect of resveratrol is associatedwith induction of apoptosis via a mitochondrial pathway alignment. Adv Exp Med Biol 614:179-186Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Mei Zhang
    • 1
  • Steven G. Swarts
    • 1
  • Liangjie Yin
    • 1
  • Chaomei Liu
    • 2
  • Yeping Tian
    • 2
  • Yongbing Cao
    • 2
  • Michael Swarts
    • 2
  • Shanmin Yang
    • 2
  • Steven B. Zhang
    • 1
  • Kunzhong Zhang
    • 2
  • Shaoqing Ju
    • 2
  • David J. OlekJr.
    • 2
  • Lisa Schwartz
    • 2
  • Peter C. Keng
    • 2
  • Rob Howell
    • 2
  • Lurong Zhang
    • 1
  • Paul Okunieff
    • 1
  1. 1.Department of Radiation OncologyUniversity of FloridaGainesvilleUSA
  2. 2.Department of Radiation OncologyUniversity of Rochester Medical CenterRochesterUSA

Personalised recommendations