Class IIc or Circular Bacteriocins

  • Leah A. Martin-Visscher
  • Marco J. van Belkum
  • John C. Vederas


The circular bacteriocins produced by Gram-positive bacteria represent a diverse class of antimicrobial peptides. These bacteriocins display enhanced stability compared to linear bacteriocins, which arises from their characteristic circular backbone. Currently, eight unique circular bacteriocins have been identified, and analysis of their gene clusters indicates that they likely utilize complex mechanisms for maturation and secretion, as well as for immunity. These bacteriocins target the cytoplasmic membrane of sensitive cells, leading to pore formation that results in loss of ions, dissipation of membrane potential, and ultimately, cell death. Structural studies suggest that despite variation in their sequences, most of these bacteriocins likely adopt a common three-dimensional architecture, consisting of four or five tightly packed helices encompassing a hydrophobic core. There are many mysteries surrounding the biosynthesis of these peptides, particularly in regard to the mechanism by which they are cyclized. Elucidation of such a mechanism may provide exciting new approaches to the bioengineering of new, stable, and antimicrobially active circular peptides.


Hydrophobic Residue Leader Peptide Full Immunity Cysteine Thiol Negative Membrane Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abriouel H, Valdivia E, Gálvez A, Maqueda M (1998) Response of Salmonella choleraesuis LT2 spheroplasts and permeabilized cells to the bacteriocin AS-48. Appl Environ Microbiol 64:4623–4626Google Scholar
  2. Abriouel H, Valdivia E, Gálvez A, Maqueda M (2001) Influence of physico-chemical factors on the oligomerization and biological activity of bacteriocin AS-48. Curr Microbiol 42:89–95Google Scholar
  3. Ananou S, Gálvez A, Martínez-Bueno M, Maqueda M, Valdivia E (2005) Synergistic effect of enterocin AS-48 in combination with outer membrane permeabilizing treatments against Escherichia coli O157: H7. J Appl Microbiol 99:1364–1372CrossRefGoogle Scholar
  4. Arakawa K, Kawai Y, Ito Y, Nakamura K, Chujo T, Nishimura J, Kitazawa H, Saito T (2010) HPLC purification and re-evaluation of chemical identity of two circular bacteriocins, gassericin A and reutericin 6. Lett Appl Microbiol 50:406–411CrossRefGoogle Scholar
  5. Arakawa K, Kawai Y, Iioka H, Tanioka M, Nishimura J, Kitazawa H, Tsurumi K, Saito T (2009) Effects of gassericins A and T, bacteriocins produced by Lactobacillus gasseri, with glycine on custard cream preservation. J Dairy Sci 92:2365–2372CrossRefGoogle Scholar
  6. Babasaki K, Takao T, Shimonishi Y, Kurahashi K (1985) Subtilosin A, a new antibiotic peptide produced by Bacillus subtilis 168: isolation, structural analysis, and biogenesis. J Biochem 98:585–603Google Scholar
  7. Bayro MJ, Mukhopadhyay J, Swapna GVT, Huang JY, Ma LC, Sineva E, Dawson PE, Montelione GT, Ebright RH (2003) Structure of antibacterial peptide microcin J25: A 21-residue lariat protoknot. J Am Chem Soc 125:12382–12383CrossRefGoogle Scholar
  8. Blond A, Peduzzi J, Goulard C, Chiuchiolo MJ, Barthélémy M, Prigent Y, Salomón RA, Farías RN, Moreno F, Rebuffat S (1999) The cyclic structure of microcin J25, a 21-residue peptide antibiotic from Escherichia coli. Eur J Biochem 259:747–755CrossRefGoogle Scholar
  9. Blond A, Cheminant M, Ségalas-Milazzo I, Peduzzi J, Barthélémy M, Goulard C, Salomón R, Moreno F, Farías R, Rebuffat S (2001) Solution structure of microcin J25, the single macrocyclic antimicrobial peptide from Escherichia coli. Eur J Biochem 268:2124–2133CrossRefGoogle Scholar
  10. Chatterjee C, Paul M, Xie LL, van der Donk WA (2005) Biosynthesis and mode of action of lantibiotics. Chem Rev 105:633–683CrossRefGoogle Scholar
  11. Chen H, Hoover DG (2003) Bacteriocins and their food applications. Compr Rev Food Sci Food Saf 2:82–100Google Scholar
  12. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788CrossRefGoogle Scholar
  13. Craik DJ (2006) Chemistry – seamless proteins tie up their loose ends. Science 311:1563–1564CrossRefGoogle Scholar
  14. Craik DJ (2009) Circling the enemy: cyclic proteins in plant defence. Trends Plant Sci 14:328–335CrossRefGoogle Scholar
  15. Craik DJ, Daly NL, Saska I, Trabi M, Rosengren KJ (2003) Structures of naturally occurring circular proteins from bacteria. J Bacteriol 185:4011–4021CrossRefGoogle Scholar
  16. Daly NL, Rosengren KJ, Craik DJ (2009) Discovery, structure and biological activities of cyclotides. Adv Drug Deliv Rev 61:918–930CrossRefGoogle Scholar
  17. Diaz M, Valdivia E, Martínez-Bueno M, Fernández M, Soler-González AS, Ramírez-Rodrigo H, Maqueda M (2003) Characterization of a new operon, as-48EFGH, from the as-48 gene cluster involved in immunity to enterocin AS-48. Appl Environ Microbiol 69:1229–1236CrossRefGoogle Scholar
  18. Draper LA, Ross RP, Hill C, Cotter PD (2008) Lantibiotic immunity. Curr Protein Pept Sci 9:39–49CrossRefGoogle Scholar
  19. Drider D, Fimland G, Héchard Y, McMullen LM, Prévost H (2006) The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev 70:564–582CrossRefGoogle Scholar
  20. Franz CMAP, van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310CrossRefGoogle Scholar
  21. Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E (1989) Bactericidal and bacteriolytic action of peptide antibiotic AS-48 against gram-positive and gram-negative bacteria and other organisms. Res Microbiol 140:57–68CrossRefGoogle Scholar
  22. Gálvez A, Maqueda M, Martínez-Bueno M, Valdivia E (1991) Permeation of bacterical cells, permeation of cytoplasmic and artificial membrane vesicles, and channel formation on lipid bilayers by peptide antibiotic AS-48 J. Bacteriology 173:886–892Google Scholar
  23. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server, p. 571-607. In: Walker JM (ed) The proteomics protocols handbook. Humana, NJGoogle Scholar
  24. Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515CrossRefGoogle Scholar
  25. Gondry M, Sauguet L, Belin P, Thai R, Amouroux R, Tellier C, Tuphile K, Jacquet M, Braud S, Courcon M, Masson C, Dubois S, Lautru S, Lecoq A, Hashimoto S, Genet R, Pernodet JL (2009) Cyclodipeptide synthases are a family of tRNA-dependent peptide bond-forming enzymes. Nat Chem Biol 5:414–420CrossRefGoogle Scholar
  26. Gong XD, Martin-Visscher LA, Nahirney D, Vederas JC, Duszyk M (2009) The circular bacteriocin, carnocyclin A, forms anion-selective channels in lipid bilayers. Biochim Biophys Acta 1788:1797–1803CrossRefGoogle Scholar
  27. González C, Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M (2000) Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA 97:11221–11226CrossRefGoogle Scholar
  28. Håvarstein LS, Diep DB, Nes IF (1995) A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol Microbiol 16:229–240CrossRefGoogle Scholar
  29. Heng NCK, Tagg JR (2006) What’s in a name? Class distinction for bacteriocins. Nat Rev Microbiol 4:160CrossRefGoogle Scholar
  30. Huang T, Geng H, Miyyapuram VR, Sit CS, Vederas JC, Nakano MM (2009) Isolation of a variant of subtilosin A with hemolytic activity. J Bacteriol 191:5690–5696CrossRefGoogle Scholar
  31. Ireland DC, Colgravel ML, Nguyencong P, Daly NL, Craik DJ (2006) Discovery and characterization of a linear cyclotide from Viola odorata: Implications for the processing of circular proteins. J Mol Biol 357:1522–1535CrossRefGoogle Scholar
  32. Ito Y, Kawai Y, Arakawa K, Honme Y, Sasaki T, Saito T (2009) Conjugative plasmid from Lactobacillus gasseri LA39 that carries genes for production of and immunity to the circular bacteriocin gassericin A. Appl Environ Microbiol 75:6340–6351CrossRefGoogle Scholar
  33. Itoh T, Fujimoto Y, Kawai Y, Toba T, Saito T (1995) Inhibition of food-borne pathogenic bacteria by bacteriocins from Lactobacillus gasseri. Lett Appl Microbiol 21:137–141CrossRefGoogle Scholar
  34. Jiménez MA, Barrachi-Saccilotto AC, Valdivia E, Maqueda M, Rico M (2005) Design, NMR characterization and activity of a 21-residue peptide fragment of bacteriocin AS-48 containing its putative membrane interacting region. J Pept Sci 11:29–36CrossRefGoogle Scholar
  35. Kalmokoff ML, Cyr TD, Hefford MA, Whitford MF, Teather RM (2003) Butyrivibriocin AR10, a new cyclic bacteriocin produced by the ruminal anaerobe Butyrivibrio fibrisolvens AR10: characterization of the gene and peptide. Can J Microbiol 49:763–773CrossRefGoogle Scholar
  36. Kawai Y, Saito T, Kitazawa H, Itoh T (1998a) Gassericin A; an uncommon cyclic bacteriocin produced by Lactobacillus gasseri LA39 linked at N- and C-terminal ends. Biosci Biotechnol Biochem 62:2438–2440CrossRefGoogle Scholar
  37. Kawai Y, Saito T, Suzuki M, Itoh T (1998b) Sequence analysis by cloning of the structural gene of gassericin A, a hydrophobic bacteriocin produced by Lactobacillus gasseri LA39. Biosci Biotechnol Biochem 62:887–892CrossRefGoogle Scholar
  38. Kawai Y, Arakawa K, Itoh A, Saitoh B, Ishii Y, Nishimura J, Kitazawa H, Itoh T, Saito T (2003) Heterologous expression of gassericin A, a bacteriocin produced by Lactobacillus gasseri LA39. Anim Sci J 74:45–51CrossRefGoogle Scholar
  39. Kawai Y, Ishii Y, Arakawa K, Uemura K, Saitoh B, Nishimura J, Kitazawa H, Yamazaki Y, Tateno Y, Itoh T, Saitoh T (2004) Structural and functional differences in two cyclic bacteriocins with the same sequences produced by lactobacilli. Appl Environ Microbiol 70:2906–2911CrossRefGoogle Scholar
  40. Kawai Y, Kusnadi J, Kemperman R, Kok J, Ito Y, Endo M, Arakawa K, Uchida H, Nishimura J, Kitazawa H, Saito T (2009) DNA sequencing and homologous expression of a small peptide conferring immunity to gassericin A, a circular bacteriocin produced by Lactobacillus gasseri LA39. Appl Environ Microbiol 75:1324–1330CrossRefGoogle Scholar
  41. Kawulka K, Sprules T, McKay RT, Mercier P, Diaper CM, Zuber P, Vederas JC (2003) Structure of subtilosin A, an antimicrobial peptide from Bacillus subtilis with unusual posttranslational modifications linking cysteine sulfurs to α-carbons of phenylalanine and threonine. J Am Chem Soc 125:4726–4727CrossRefGoogle Scholar
  42. Kawulka KE, Sprules T, Diaper CM, Whittal RM, McKay RT, Mercier P, Zuber P, Vederas JC (2004) Structure of subtilosin A, a cyclic antimicrobial peptide from Bacillus subtilis with unusual sulfur to α-carbon cross-links: Formation and reduction of α-thio-α-amino acid derivatives. Biochemistry 43:3385–3395CrossRefGoogle Scholar
  43. Kemperman R, Jonker M, Nauta A, Kuipers OP, Kok J (2003a) Functional analysis of the gene cluster involved in production of the bacteriocin circularin A by Clostridium beijerinckii ATCC 25752. Appl Environ Microbiol 69:5839–5848CrossRefGoogle Scholar
  44. Kemperman R, Kuipers A, Karsens H, Nauta A, Kuipers O, Kok J (2003b) Identification and characterization of two novel clostridial bacteriocins, circularin A and closticin 574. Appl Environ Microbiol 69:1589–1597CrossRefGoogle Scholar
  45. Koglin A, Walsh CT (2009) Structural insights into nonribosomal peptide enzymatic assembly lines. Nat Prod Rep 26:987–1000CrossRefGoogle Scholar
  46. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305:567–580CrossRefGoogle Scholar
  47. Langdon GM, Bruix M, Gálvez A, Valdivia E, Maqueda M, Rico M (1998) Sequence-specific 1H assignment and secondary structure of the bacteriocin AS-48 cyclic peptide. J Biomol NMR 12:173–175CrossRefGoogle Scholar
  48. Leer RJ, van der Vossen JMBM, van Giezen M, van Noort JM, Pouwels PH (1995) Genetic analysis of acidocin B, a novel bacteriocin produced by Lactobacillus acidophilus. Microbiology 141:1629–1635CrossRefGoogle Scholar
  49. Maqueda M, Gálvez A, Martínez-Bueno M, Sanchez-Barrena MJ, González C, Albert A, Rico M, Valdivia E (2004) Peptide AS-48: prototype of a new class of cyclic bacteriocins. Curr Protein Pept Sci 5:399–416CrossRefGoogle Scholar
  50. Maqueda M, Sánchez-Hidalgo M, Fernández M, Montalbán-López M, Valdivia E, Martínez-Bueno M (2008) Genetic features of circular bacteriocins produced by Gram-positive bacteria. FEMS Microbiol Rev 32:2–22CrossRefGoogle Scholar
  51. Marahiel MA (2009) Working outside the protein-synthesis rules: insights into non-ribosomal peptide synthesis. J Pept Sci 15:799–807CrossRefGoogle Scholar
  52. Martínez-Bueno M, Gálvez A, Valdivia E, Maqueda M (1990) A transferable plasmid associated with AS-48 production in Enterococcus faecalis. J Bacteriol 172:2817–2818Google Scholar
  53. Martínez-Bueno M, Maqueda M, Gálvez A, Samyn B, Van Beeumen J, Coyette J, Valdivia E (1994) Determination of the gene sequence and the molecular structure of the enterococcal peptide antibiotic AS-48. J Bacteriol 176:6334–6339Google Scholar
  54. Martínez-Bueno M, Valdivia E, Gálvez A, Coyette J, Maqueda M (1998) Analysis of the gene cluster involved in production and immunity of the peptide antibiotic AS-48 in Enterococcus faecalis. Mol Microbiol 27:347–358CrossRefGoogle Scholar
  55. Martin-Visscher LA, van Belkum MJ, Garneau-Tsodikova S, Whittal RM, Zheng J, McMullen LM, Vederas JC (2008) Isolation and characterization of carnocyclin A, a novel circular bacteriocin produced by Carnobacterium maltaromaticum UAL307. Appl Environ Microbiol 74:4756–4763CrossRefGoogle Scholar
  56. Martin-Visscher LA, Gong XD, Duszyk M, Vederas JC (2009) The three-dimensional structure of carnocyclin a reveals that many circular bacteriocins share a common structural motif. J Biol Chem 284:28674–28681CrossRefGoogle Scholar
  57. Marx R, Stein T, Entian KD, Glaser SJ (2001) Structure of the Bacillus subtilis peptide antibiotic subtilosin A determined by 1H-NMR and matrix assisted laser desorption/ionization time-of-fight mass spectrometry. J Protein Chem 20:501–506CrossRefGoogle Scholar
  58. Miteva M, Andersson M, Karshikoff A, Otting G (1999) Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin. FEBS Lett 462:155–158CrossRefGoogle Scholar
  59. Montalbán-López M, Spolaore B, Pinato O, Martínez-Bueno M, Valdivia E, Maqueda M, Fontana A (2008) Characterization of linear forms of the circular enterocin AS-48 obtained by limited proteolysis. FEBS Lett 582:3237–3242CrossRefGoogle Scholar
  60. Nes IF, Diep DB, Holo H (2007a) Bacteriocin diversity in Streptococcus and Enterococcus. J Bacteriol 189:1189–1198CrossRefGoogle Scholar
  61. Nes IF, Yoon SS, Diep WB (2007b) Ribosomally synthesiszed antimicrobial peptides (Bacteriocins) in lactic acid bacteria: A review. Food Sci Biotechnol 16:675–690Google Scholar
  62. Oman TJ, van der Donk WA (2010) Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat Chem Biol 6:9–18CrossRefGoogle Scholar
  63. Rosengren KJ, Clark RJ, Daly NL, Göransson U, Jones A, Craik DJ (2003) Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. J Am Chem Soc 125:12464–12474CrossRefGoogle Scholar
  64. Salomón RA, Farías RN (1992) Microcin-25, a novel antimicrobial peptide produced by Escherichia coli. J Bacteriol 174:7428–7435Google Scholar
  65. Samyn B, Martínez-Bueno M, Devreese B, Maqueda M, Gálvez A, Valdivia E, Coyette J, Van Beeumen J (1994) The cyclic structure of the enterococcal peptide antibiotic AS-48. FEBS Lett 352:87–90CrossRefGoogle Scholar
  66. Sánchez-Barrena MJ, Martínez-Ripoll M, Gálvez A, Valdivia E, Maqueda M, Cruz V, Albert A (2003) Structure of bacteriocin AS-48: from soluble state to membrane bound state. J Mol Biol 334:541–549CrossRefGoogle Scholar
  67. Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA, Craik DJ (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282:29721–29728CrossRefGoogle Scholar
  68. Sawa N, Zendo T, Kiyofuji J, Fujita K, Himeno K, Nakayama J, Sonomoto K (2009) Identification and characterization of lactocyclicin Q, a novel cyclic bacteriocin produced by Lactococcus sp. strain QU 12. Appl Environ Microbiol 75:1552–1558CrossRefGoogle Scholar
  69. Shelburne CE, An FY, Dholpe V, Ramamoorthy A, Lopatin DE, Lantz MS (2007) The spectrum of antimicrobial activity of the bacteriocin subtilosin A. J Antimicrob Chemother 59:297–300CrossRefGoogle Scholar
  70. Silkin L, Hamza S, Kaufman S, Cobb SL, Vederas JC (2008) Spermicidal bacteriocins: Lacticin 3147 and subtilosin A. Bioorg Med Chem Lett 18:3103–3106CrossRefGoogle Scholar
  71. Thennarasu S, Lee DK, Poon A, Kawulka KE, Vederas JC, Ramamoorthy A (2005) Membrane permeabilization, orientation, and antimicrobial mechanism of subtilosin A. Chem Phys Lipids 137:38–51CrossRefGoogle Scholar
  72. Toba T, Samant SK, Yoshioka E, Itoh T (1991) Reutericin 6, a new bacteriocin produced by Lactobacillus reuteri LA6. Lett Appl Microbiol 13:281–286CrossRefGoogle Scholar
  73. van Belkum MJ, Stiles ME (2000) Nonlantibiotic antibacterial peptides from lactic acid bacteria. Nat Prod Rep 17:323–335CrossRefGoogle Scholar
  74. van Belkum MJ, Worobo RW, Stiles ME (1997) Double-glycine-type leader peptides direct secretion of bacteriocins by ABC transporters: colicin V secretion in Lactococcus lactis. Mol Microbiol 23:1293–1301CrossRefGoogle Scholar
  75. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303:1805–1810CrossRefGoogle Scholar
  76. Wilson KA, Kalkum M, Ottesen J, Yuzenkova J, Chait BT, Landick R, Muir T, Severinov K, Darst SA (2003) Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. J Am Chem Soc 125:12475–12483CrossRefGoogle Scholar
  77. Wirawan RE, Swanson KM, Kleffmann T, Jack RW, Tagg JR (2007) Uberolysin: a novel cyclic bacteriocin produced by Streptococcus uberis. Microbiology 153:1619–1630CrossRefGoogle Scholar
  78. Zheng G, Yan LZ, Vederas JC, Zuber P (1999) Genes of the sbo-alb locus of Bacillus subtilis are required for production of the antilisterial bacteriocin subtilosin. J Bacteriol 181:7346–7355Google Scholar
  79. Zheng GL, Hehn R, Zuber P (2000) Mutational analysis of the sbo-alb locus of Bacillus subtilis: identification of genes required for subtilosin production and immunity. J Bacteriol 182:3266–3273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Leah A. Martin-Visscher
  • Marco J. van Belkum
  • John C. Vederas
    • 1
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada

Personalised recommendations