Skip to main content

Genomics of Clostridium

  • Chapter
  • First Online:
Genomics of Foodborne Bacterial Pathogens

Part of the book series: Food Microbiology and Food Safety ((FMFS))

  • 1500 Accesses

Abstract

The clostridia have a rich history and contemporary importance in industrial, environmental, and medical microbiology. Due to their ability to form endospores, clostridia are ubiquitous in nature and are found in many environments, especially in soils and the intestinal tract of animals including humans. Many clostridia cause devastating diseases of humans and animals, such as botulism, tetanus, and gas gangrene, through the production of protein toxins. The clostridia produce more protein toxins that are lethal for humans and animals than any other bacterial genus (Johnson, 2005; Van Heyningen, 1950). Other species are important in the formation of solvents and organic acids by anaerobic fermentations or as a source of unique enzymes for biocatalysis (Bradshaw and Johnson, 2010; Hatheway and Johnson, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alam SI, Bansod S, Singh L (2008) Immunization against Clostridium perfringens cells elicits protection against Clostridium tetani in mouse model: identification of cross-reactive proteins using proteomic methodologies. BMC Microbiol 8:194

    Article  Google Scholar 

  • Al-Khaldi S, Myers K, Rasooly A, Chizhikov V (2004) Genotyping of Clostridium perfringens toxins using multiple oligonucleotide microarray hybridization. Mol Cell Probes 18:359–367

    Article  CAS  Google Scholar 

  • Alsaker KV, Paredes CJ, Papoutsakis ET (2005) Design, optimization and validation of genomic DNA microarrays for examining the Clostridium acetobutylicum transcriptome. Biotechnol Bioprocess Eng 10:432–443

    Article  CAS  Google Scholar 

  • Alsaker KV, Spitzer TR, Papoutsakis ET (2004) Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 186:1959–1971

    Article  CAS  Google Scholar 

  • Anonymous (1993) In: Sonenshein AL, Hoch JA, Losick R (eds) Bacillus subtilis and other gram-positive bacteria biochemistry, physiology, and molecular genetics. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Anonymous (2009) Genus Clostridium. Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes, 2nd edn. Bergey’s Manual Trust, pp 738–827

    Google Scholar 

  • Arndt JW, Jacobson MJ, Abola EE, Forsyth CM, Tepp WH, Marks JD, Johnson EA, Stevens RC (2006) A structural perspective of the sequence variability within botulinum neurotoxin subtypes A1-A4. J Mol Biol 362:733–742

    Article  CAS  Google Scholar 

  • Artin I, Carter AT, Holst E, Lovenklev M, Mason DR, Peck MW, Radstrom P (2008) Effects of carbon dioxide on neurotoxin gene expression in nonproteolytic Clostridium botulinum type E. Appl Environ Microbiol 74:2391

    Article  CAS  Google Scholar 

  • Artin I, Mason DR, Pin C, Schelin J, Peck MW, Holst E, Radstrom P, Carter AT (2010) Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome. Appl Environ Microbiol 76:1168

    Article  CAS  Google Scholar 

  • Aureli P, Fenicia L, Pasolini B, Gianfranceschi M, McCroskey LM, Hatheway CL (1986) Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy. J Infect Dis 154:207–211

    CAS  Google Scholar 

  • Barbe V, Cruveiller S, Kunst F, Lenoble P, Meurice G, Sekowska A, Vallenet D, Wang T, Moszer I, Medigue C (2009) From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later. Microbiology 155:1758

    Article  CAS  Google Scholar 

  • Bayer EA, Lamed R, White BA, Flint HJ (2008) From cellulosomes to cellulosomics. Chem Rec 8:364–377

    Article  CAS  Google Scholar 

  • Bettegowda C, Huang X, Lin J, Cheong I, Kohli M, Szabo SA, Zhang X, Diaz LA Jr, Velculescu VE et al (2006) The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 24:1573–1580

    Article  CAS  Google Scholar 

  • Bradshaw M, Johnson EA (2010) Genetic manipulation of Clostridium. In: Baltz RH, Demain AL, Davies JE (eds) Manual of industrial microbiology and biotechnology, 3rd edn. ASM Press, Washington, DC, pp 238–261

    Google Scholar 

  • Brown SD, Raman B, McKeown CK, Kale SP, He Z, Mielenz JR (2007) Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray. Appl Biochem Biotechnol 137–140:663–674

    Article  Google Scholar 

  • Bruggemann H, Baumer S, Fricke WF, Wiezer A, Liesegang H, Decker I, Herzberg C, Martinez-Arias R, Merkl R, Henne A, Gottschalk G (2003) The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA 100:1316–1321

    Article  CAS  Google Scholar 

  • Bruggemann H, Gottschalk G (2004) Insights in metabolism and toxin production from the complete genome sequence of Clostridium tetani. Anaerobe 10:53–68

    Article  CAS  Google Scholar 

  • Canard B, Cole S (1989) Genome organization of the anaerobic pathogen Clostridium perfringens. Proc Natl Acad Sci 86:6676

    Article  CAS  Google Scholar 

  • Carter AT, Paul CJ, Mason DR, Twine SM, Alston MJ, Logan SM, Austin JW, Peck MW (2009) Independent evolution of neurotoxin and flagellar genetic loci in proteolytic Clostridium botulinum. BMC Genomics 10:115

    Article  Google Scholar 

  • Cato E, George WL, Finegold S (1986) Genus Clostridium. Bergey’s Manual of Systematic Bacteriology: Volume 2. Bergey’s Manual Trust, pp 1141–1200

    Google Scholar 

  • Collins M, Lawson P, Willems A, Cordoba J, Fernandez-Garayzabal J, Garcia P, Cai J, Hippe H, Farrow J (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Evol Microbiol 44:812

    CAS  Google Scholar 

  • Cooper KK, Songer JG (2009) Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15:55–60

    Article  Google Scholar 

  • Dawson LF, Valiente E, Wren BW (2009) Clostridium difficile – a continually evolving and problematic pathogen. Infect Genet Evol 9:1410–1417

    Article  CAS  Google Scholar 

  • Dineen SS, Bradshaw M, Johnson EA (2000) Cloning, nucleotide sequence, and expression of the gene encoding the bacteriocin boticin B from Clostridium botulinum strain 213B. Appl Environ Microbiol 66:5480–5483

    Article  CAS  Google Scholar 

  • Emerson JE, Stabler RA, Wren BW, Fairweather NF (2008) Microarray analysis of the transcriptional responses of Clostridium difficile to environmental and antibiotic stress. J Med Microbiol 57:757–764

    Article  CAS  Google Scholar 

  • Fagan RP, Albesa-Jove D, Qazi O, Svergun DI, Brown KA, Fairweather NF (2009) Structural insights into the molecular organization of the S-layer from Clostridium difficile. Mol Microbiol 71:1308–1322

    Article  CAS  Google Scholar 

  • Fischetti VA (2000) Surface proteins of gram-positive bacteria. In: Fischetti, Novick, Ferretti, Portnoy, Rood (eds) Gram-positive pathogens. American Society for Microbiology, pp 11–24

    CAS  Google Scholar 

  • Franciosa G, Aureli P, Schechter R(2003) Clostridium botulinum. In: Miliotis MD, Bier JW (eds) International handbook of foodborne pathogens. Marcel Dekker, New York, NY, pp 62–89

    Google Scholar 

  • Gold ND, Martin VJ (2007) Global view of the Clostridium thermocellum cellulosome revealed by quantitative proteomic analysis. J Bacteriol 189:6787–6795

    Article  CAS  Google Scholar 

  • Goodnough MC, Johnson EA (1996) Botulism. In: Anonymous (ed) Topley and Wilson’s current topics in microbiology. Arnold Publishing, London

    Google Scholar 

  • Hatheway CL, Johnson EA (1998) Clostridium: the spore-bearing anaerobes. In: Balows A, Duerden B (eds) Topley and Wilson’s microbiology and microbial infections Vol. 2, Systematic Bacteriology, Arnold, London, pp 731–782

    Google Scholar 

  • Hauschild AHW (1993) Epidemiology of human foodborne botulism Clostridium botulinum: ecology and control in foods. Marcel Dekker, New York, NY, pp 69–104

    Google Scholar 

  • He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE, Seth-Smith HM, Quail MA et al (2010) Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 107:7527–7532

    Article  CAS  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Johnson EA, Smith LA et al (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189:818–832

    Article  CAS  Google Scholar 

  • Hutson R, Thompson D, Collins M (1993a) Genetic interrelationships of saccharolytic Clostridium botulinum types B, E and F and related clostridia as revealed by small-subunit rRNA gene sequences. FEMS Microbiol Lett 108:103–110

    Article  CAS  Google Scholar 

  • Hutson R, Thompson D, Lawson P, Schocken-Itturino R, Böttger E, Collins M (1993b) Genetic interrelationships of proteolytic Clostridium botulinum types A, B, and F and other members of the Clostridium botulinum complex as revealed by small-subunit rRNA gene sequences. Antonie Van Leeuwenhoek 64:273–283

    Article  CAS  Google Scholar 

  • Janvilisri T, Scaria J, Thompson AD, Nicholson A, Limbago BM, Arroyo LG, Songer JG, Grohn YT, Chang YF (2009) Microarray identification of Clostridium difficile core components and divergent regions associated with host origin. J Bacteriol 191:3881–3891

    Article  CAS  Google Scholar 

  • Johnson EA (2005) Clostridium botulinum and Clostridium tetani. In: Borriello SP, Murray PR, Funke G (eds) Topley and Wilson’s microbiology and microbial infections, 8th edn. Hodder Arnold, London, pp 1035–1088

    Google Scholar 

  • Johnson EA (2007) Clostridium botulinum. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers, 3rd edn. ASM Press, Washington, DC, pp 401–421

    Google Scholar 

  • Johnson EA, Tepp WH, Bradshaw M, Gilbert RJ, Cook PE, McIntosh ED (2005) Characterization of Clostridium botulinum strains associated with an infant botulism case in the United Kingdom. J Clin Microbiol 43:2602–2607

    Article  CAS  Google Scholar 

  • Jones S, Paredes C, Tracy B, Cheng N, Sillers R, Senger R, Papoutsakis E (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114

    Article  Google Scholar 

  • Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G (2009) Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 191:5377–5386

    Article  CAS  Google Scholar 

  • Lee J, Yun H, Feist AM, Palsson BO, Lee SY (2008) Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. Appl Microbiol Biotechnol 80:849–862

    Article  CAS  Google Scholar 

  • Lindstrom M, Hinderink K, Somervuo P, Kiviniemi K, Nevas M, Chen Y, Auvinen P, Carter AT, Mason DR, Peck MW, Korkeala H (2009) Comparative genomic hybridization analysis of two predominant Nordic group I (proteolytic) Clostridium botulinum type B clusters. Appl Environ Microbiol 75:2643–2651

    Article  CAS  Google Scholar 

  • Marshall K, Bradshaw M, Johnson E, Bruggemann H (2010) Conjugative botulinum neurotoxin-encoding plasmids in Clostridium botulinum. PLoS One 5:e11087

    Article  Google Scholar 

  • Myers GS, Rasko DA, Cheung JK, Ravel J, Seshadri R, DeBoy RT, Ren Q, Varga J, Awad MM et al (2006) Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res 16:1031–1040

    Article  CAS  Google Scholar 

  • Nolling J, Breton G, Omelchenko MV, Makarova KS, Zeng Q, Gibson R, Lee HM, Dubois J, Qiu D et al (2001) Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol 183:4823–4838

    Article  CAS  Google Scholar 

  • Onyenwoke RU, Brill JA, Farahi K, Wiegel J (2004) Sporulation genes in members of the low G C gram-type-positive phylogenetic branch (Firmicutes). Arch Microbiol 182:182–192

    Article  CAS  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  CAS  Google Scholar 

  • Perreten V, Vorlet-Fawer L, Slickers P, Ehricht R, Kuhnert P, Frey J (2005) Microarray-based detection of 90 antibiotic resistance genes of gram-positive bacteria. J Clin Microbiol 43:2291–2302

    Article  CAS  Google Scholar 

  • Qazi O, Hitchen P, Tissot B, Panico M, Morris HR, Dell A, Fairweather N (2009) Mass spectrometric analysis of the S-layer proteins from Clostridium difficile demonstrates the absence of glycosylation. J Mass Spectrom 44:368–374

    Article  CAS  Google Scholar 

  • Rainey FA, Stackebrandt E (1993) 16S rDNA analysis reveals phylogenetic diversity among the polysaccharolytic clostridia FEMS Microbiol Lett 113:125–128

    Article  CAS  Google Scholar 

  • Roberts SB, Gowen CM, Brooks JP, Fong SS (2010) Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production. BMC Syst Biol 4:31

    Article  Google Scholar 

  • Rood JI (1998) Virulence genes of Clostridium perfringens. Annu Rev Microbiol 52:333–360

    Article  CAS  Google Scholar 

  • Rood JI (2004) Virulence plasmids of spore-forming bacteria. In: Funnell BE, Phillips GJ (eds) Plasmid biology. ASM Press, Washington, DC, pp 413–422

    Google Scholar 

  • Rood J, Cole S (1991) Molecular genetics and pathogenesis of Clostridium perfringens. Microbiol Mol Biol Rev 55:621–648

    CAS  Google Scholar 

  • Scheeff ED, Axelrod HL, Miller MD, Chiu HJ, Deacon AM, Wilson IA, Manning G (2009) Genomics, evolution, and crystal structure of a new family of bacterial spore kinases. Proteins: Structure, Function, and Bioinformatics 78(6):1470–1482

    Article  Google Scholar 

  • Sebaihia M, Peck MW, Minton NP, Thomson NR, Holden MT, Mitchell WJ, Carter AT, Bentley SD, Mason DR et al (2007) Genome sequence of a proteolytic (group I) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes. Genome Res 17:1082–1092

    Article  CAS  Google Scholar 

  • Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM et al (2006) The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 38:779–786

    Article  Google Scholar 

  • Senger RS, Papoutsakis ET (2008a) Genome-scale model for Clostridium acetobutylicum: part I. metabolic network resolution and analysis. Biotechnol Bioeng 101:1036–1052

    Article  CAS  Google Scholar 

  • Senger RS, Papoutsakis ET (2008b) Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. Biotechnol Bioeng 101:1053–1071

    Article  CAS  Google Scholar 

  • Shimizu T, Shima K, Yoshino K, Yonezawa K, Shimizu T, Hayashi H (2002a) Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in Clostridium perfringens. J Bacteriol 184:2587–2594

    Article  CAS  Google Scholar 

  • Shimizu T, Ohtani K, Hirakawa H, Ohshima K, Yamashita A, Shiba T, Ogasawara N, Hattori M, Kuhara S, Hayashi H (2002b) Complete genome sequence of Clostridium perfringens, an anaerobic flesh-eater. Proc Natl Acad Sci USA 99:996–1001

    Article  CAS  Google Scholar 

  • Simpson L (1981) The origin, structure, and pharmacological activity of botulinum toxin. Pharmacol Rev 33:155–188

    CAS  Google Scholar 

  • Smith LDS (1975) Clostridial wound infections. In: Smith LDS (ed) The pathogenic anaerobic bacteria, 2nd edn. Charles C. Thomas, Springfield IL, pp 321–324

    Google Scholar 

  • Smith LDS, Sugiyama H (1988) Botulism. In: Barlows, Albert (eds) The organism, its toxins, the disease, 2nd edn. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Songer JG (2010) Clostridia as agents of zoonotic disease. Vet Microbiol 140:399–404

    Article  CAS  Google Scholar 

  • Stabler RA, Gerding DN, Songer JG, Drudy D, Brazier JS, Trinh HT, Witney AA, Hinds J, Wren BW (2006) Comparative phylogenomics of Clostridium difficile reveals clade specificity and microevolution of hypervirulent strains. J Bacteriol 188:7297–7305

    Article  CAS  Google Scholar 

  • Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley TD, Sebaihia M, Quail MA et al (2009) Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 10:R102

    Article  Google Scholar 

  • Stackebrandt E, Kramer I, Swiderski J, Hippe H (1999) Phylogenetic basis for a taxonomic dissection of the genus Clostridium. FEMS Immunol Med Microbiol 24:253–258

    Article  CAS  Google Scholar 

  • Suen J, Hatheway C, Steigerwalt A, Brenner D (1988) Genetic confirmation of identities of neurotoxigenic Clostridium baratii and Clostridium butyricum implicated as agents of infant botulism. J Clin Microbiol 26:2191

    CAS  Google Scholar 

  • Sullivan L, Bennett GN (2006) Proteome analysis and comparison of Clostridium acetobutylicum ATCC 824 and Spo0A strain variants. J Ind Microbiol Biotechnol 33:298–308

    Article  CAS  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003a) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  CAS  Google Scholar 

  • Tomas CA, Alsaker KV, Bonarius HP, Hendriksen WT, Yang H, Beamish JA, Paredes CJ, Papoutsakis ET (2003b) DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 185:4539–4547

    Article  CAS  Google Scholar 

  • Tomas CA, Beamish J, Papoutsakis ET (2004) Transcriptional analysis of butanol stress and tolerance in Clostridium acetobutylicum. J Bacteriol 186:2006–2018

    Article  CAS  Google Scholar 

  • Tummala SB, Junne SG, Paredes CJ, Papoutsakis ET (2003) Transcriptional analysis of product-concentration driven changes in cellular programs of recombinant Clostridium acetobutylicum strains. Biotechnol Bioeng 84:842–854

    Article  CAS  Google Scholar 

  • Van Heyningen WE (1950) In: Anonymous (ed) Bacterial toxins. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC (2005) Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. The Lancet 366:1079–1084

    Article  CAS  Google Scholar 

  • Williams TI, Combs JC, Lynn BC, Strobel HJ (2007) Proteomic profile changes in membranes of ethanol-tolerant Clostridium thermocellum. Appl Microbiol Biotechnol 74:422–432

    Article  CAS  Google Scholar 

  • Willis AT (1969) In: Anonymous (ed) Clostridia of wound infection. Butterworths, London

    Google Scholar 

  • Wright A, Wait R, Begum S, Crossett B, Nagy J, Brown K, Fairweather N (2005) Proteomic analysis of cell surface proteins from Clostridium difficile. Proteomics 5:2443–2452

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric A. Johnson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Jacobson, M.J., Johnson, E.A. (2011). Genomics of Clostridium . In: Wiedmann, M., Zhang, W. (eds) Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7686-4_4

Download citation

Publish with us

Policies and ethics