Molecular Epidemiology of Foodborne Pathogens

Chapter
Part of the Food Microbiology and Food Safety book series (FMFS)

Abstract

The purpose of this chapter is to describe the basic principles and advancements in the molecular epidemiology of foodborne pathogens. Epidemiology is the study of the distribution and determinants of infectious diseases and/or the dynamics of disease transmission. The goals of epidemiology include the identification of physical sources, routes of transmission of infectious agents, and distribution and relationships of different subgroups. Molecular epidemiology is the study of epidemiology at the molecular level. It has been defined as “a science that focuses on the contribution of potential genetic and environmental risk factors, identified at the molecular level, to the etiology, distribution and prevention of diseases within families and across populations” .

Keywords

Fermentation Codon Recombination Electrophoresis Bacillus 

References

  1. Bansal NS, McDonell FH, Smith A, Arnold G, Ibrahim GF (1996) Multiplex PCR assay for the routine detection of Listeria in food. Int J Food Microbiol 33:293–300Google Scholar
  2. Barrett TJ, Gerner-Smidt P, Swaminathan B (2006) Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis 3:20–31Google Scholar
  3. Bender JB, Hedberg CW, Boxrud DJ, Besser JM, Wicklund JH, Smith KE, Osterholm MT (2001) Use of molecular subtyping in surveillance for Salmonella enterica serotype Typhimurium. N Engl J Med 344:189–195Google Scholar
  4. Bibb WF, Gellin BG, Weaver R, Schwartz B, Plikaytis BD, Reeves MW, Pinner RW, Broome CV (1990) Analysis of clinical and food-borne isolates of Listeria monocytogenes in the United States by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Appl Environ Microbiol 56:2133–2141Google Scholar
  5. Bibb WF, Schwartz B, Gellin BG, Plikaytis BD, Weaver RE (1989) Analysis of Listeria monocytogenes by multilocus enzyme electrophoresis and application of the method to epidemiologic investigations. Int J Food Microbiol 8:233–239Google Scholar
  6. Borucki MK, Kim SH, Call DR, Smole SC, Pagotto F (2004) Selective discrimination of Listeria monocytogenes epidemic strains by a mixed-genome DNA microarray compared to discrimination by pulsed-field gel electrophoresis, ribotyping, and multilocus sequence typing. J Clin Microbiol 42:5270–5276Google Scholar
  7. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29:365–371Google Scholar
  8. Brown EW, Kotewicz ML, Cebula TA (2002) Detection of recombination among Salmonella enterica strains using the incongruence length difference test. Mol Phylogenet Evol 24:102–120Google Scholar
  9. Brown EW, Mammel MK, LeClerc JE, Cebula TA (2003) Limited boundaries for extensive horizontal gene transfer among Salmonella pathogens. Proc Natl Acad Sci USA 100:15676–15681Google Scholar
  10. Cardinali G, Martini A, Preziosi R, Bistoni F, Baldelli F (2002) Multicenter comparison of three different analytical systems for evaluation of DNA banding patterns from Cryptococcus neoformans. J Clin Microbiol 40:2095–2100Google Scholar
  11. Carrico JA, Pinto FR, Simas C, Nunes S, Sousa NG, Frazao N, de Lencastre H, Almeida JS (2005) Assessment of band-based similarity coefficients for automatic type and subtype classification of microbial isolates analyzed by pulsed-field gel electrophoresis. J Clin Microbiol 43:5483–5490Google Scholar
  12. Caugant DA, Ashton FE, Bibb WF, Boerlin P, Donachie W, Low C, Gilmour A, Harvey J, Norrung B (1996) Multilocus enzyme electrophoresis for characterization of Listeria monocytogenes isolates: results of an international comparative study. Int J Food Microbiol 32:301–311Google Scholar
  13. Chan MS, Maiden MC, Spratt BG (2001) Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17:1077–1083Google Scholar
  14. Chen Y, Knabel SJ (2008) Prophages in Listeria monocytogenes contain single-nucleotide polymorphisms that differentiate outbreak clones within epidemic clones. J Clin Microbiol 46:1478–1484Google Scholar
  15. Chen Y, Zhang W, Knabel SJ (2005) Multi-virulence-locus sequence typing clarifies epidemiology of recent listeriosis outbreaks in the United States. J Clin Microbiol 43:5291–5294Google Scholar
  16. Chen Y, Zhang W, Knabel SJ (2007) Multi-virulence-locus sequence typing identifies single nucleotide polymorphisms which differentiate epidemic clones and outbreak strains of Listeria monocytogenes. J Clin Microbiol 45:835–846Google Scholar
  17. Cooke FJ, Wain J, Fookes M, Ivens A, Thomson N, Brown DJ, Threlfall EJ, Gunn G, Foster G, Dougan G (2007) Prophage sequences defining hot spots of genome variation in Salmonella enterica serovar Typhimurium can be used to discriminate between field isolates. J Clin Microbiol 45:2590–2598Google Scholar
  18. Cooper JE, Feil EJ (2004) Multilocus sequence typing – what is resolved? Trends Microbiol 12:373–377Google Scholar
  19. Craven SE, Cox NA, Bailey JS, Stern NJ, Meinersmann RJ, Blankenship LC (1993) Characterization of S. california and S. typhimurium strains with reduced ability to colonize the intestinal tract of broiler chicks. Avian Dis 37:339–348Google Scholar
  20. Dalmasso A, Civera T, Bottero MT (2009) Multiplex primer-extension assay for identification of six pathogenic vibrios. Int J Food Microbiol 129:21–25Google Scholar
  21. Dauphin G, Ragimbeau C, Malle P (2001) Use of PFGE typing for tracing contamination with Listeria monocytogenes in three cold-smoked salmon processing plants. Int J Food Microbiol 64:51–61Google Scholar
  22. Davis MA, Hancock DD, Besser TE, Call DR (2003) Evaluation of pulsed-field gel electrophoresis as a tool for determining the degree of genetic relatedness between strains of Escherichia coli O157:H7. J Clin Microbiol 41:1843–1849Google Scholar
  23. De Cesare A, Bruce JL, Dambaugh TR, Guerzoni ME, Wiedmann M (2001) Automated ribotyping using different enzymes to improve discrimination of Listeria monocytogenes isolates, with a particular focus on serotype 4b strains. J Clin Microbiol 39:3002–3005Google Scholar
  24. De la Vega FM, Lazaruk KD, Rhodes MD, Wenz MH (2005) Assessment of two flexible and compatible SNP genotyping platforms: TaqMan SNP genotyping assays and the SNPlex genotyping system. Mutat Res 573:111–135Google Scholar
  25. Dearlove AM (2002) High throughput genotyping technologies. Brief Funct Genomic Proteomic 1:139–150Google Scholar
  26. Destro MT, Leitao M, Farber JM (1996a) Use of molecular typing methods to trace the dissemination of Listeria monocytogenes in a shrimp processing plant. Appl Environ Microbiol 62:1852–1853Google Scholar
  27. Destro MT, Leitao MF, Farber JM (1996b) Use of molecular typing methods to trace the dissemination of Listeria monocytogenes in a shrimp processing plant. Appl Environ Microbiol 62:705–711Google Scholar
  28. Doumith M, Jacquet C, Goulet V, Oggioni C, Van Loock F, Buchrieser C, Martin P (2006) Use of DNA arrays for the analysis of outbreak-related strains of Listeria monocytogenes. Int J Med Microbiol 296:559–562Google Scholar
  29. Ducey TF, Page B, Usgaard T, Borucki MK, Pupedis K, Ward TJ (2007) A single-nucleotide-polymorphism-based multilocus genotyping assay for subtyping lineage I isolates of Listeria monocytogenes. Appl Environ Microbiol 73:133–147Google Scholar
  30. Duck WM, Steward CD, Banerjee SN, McGowan JE Jr, Tenover FC (2003) Optimization of computer software settings improves accuracy of pulsed-field gel electrophoresis macrorestriction fragment pattern analysis. J Clin Microbiol 41:3035–3042Google Scholar
  31. Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363:71–82Google Scholar
  32. Feil EJ, Holmes EC, Bessen DE, Chan MS, Day NP, Enright MC, Goldstein R, Hood DW, Kalia A, Moore CE, Zhou J, Spratt BG (2001) Recombination within natural populations of pathogenic bacteria: short-term empirical estimates and long-term phylogenetic consequences. Proc Natl Acad Sci USA 98:182–187Google Scholar
  33. Feil EJ, Spratt BG (2001) Recombination and the population structures of bacterial pathogens. Annu Rev Microbiol 55:561–590Google Scholar
  34. Fitzgerald C, Collins M, van Duyne S, Mikoleit M, Brown T, Fields P (2007) Multiplex, bead-based suspension array for molecular determination of common Salmonella serogroups. J Clin Microbiol 45:3323–3334Google Scholar
  35. Foxman B, Zhang L, Koopman JS, Manning SD, Marrs CF (2005) Choosing an appropriate bacterial typing technique for epidemiologic studies. Epidemiol Perspect Innov 2:10Google Scholar
  36. Frost JA, Kramer JM, Gillanders SA (1999) Phage typing of Campylobacter jejuni and Campylobacter coli and its use as an adjunct to serotyping. Epidemiol Infect 123:47–55Google Scholar
  37. Fuenzalida L, Hernandez C, Toro J, Rioseco ML, Romero J, Espejo RT (2006) Vibrio parahaemolyticus in shellfish and clinical samples during two large epidemics of diarrhoea in southern Chile. Environ Microbiol 8:675–683Google Scholar
  38. Fukiya S, Mizoguchi H, Tobe T, Mori H (2004) Extensive genomic diversity in pathogenic Escherichia coli and Shigella strains revealed by comparative genomic hybridization microarray. J Bacteriol 186:3911–3921Google Scholar
  39. Gerner-Smidt P, Graves LM, Hunter S, Swaminathan B (1998) Computerized analysis of restriction fragment length polymorphism patterns: comparative evaluation of two commercial software packages. J Clin Microbiol 36:1318–1323Google Scholar
  40. Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytia-Trees E, Ribot EM, Swaminathan B (2006) PulseNet USA: a five-year update. Foodborne Pathog Dis 3:9–19Google Scholar
  41. Gillings M, Holley M (1997) Repetitive element PCR fingerprinting (rep-PCR) using enterobacterial repetitive intergenic consensus (ERIC) primers is not necessarily directed at ERIC elements. Lett Appl Microbiol 25:17–21Google Scholar
  42. Gomes AR, Vinga S, Zavolan M, de Lencastre H (2005) Analysis of the genetic variability of virulence-related loci in epidemic clones of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 49:366–379Google Scholar
  43. Gonzalez-Escalona N, Whitney B, Jaykus LA, DePaola A (2007) Comparison of direct genome restriction enzyme analysis and pulsed-field gel electrophoresis for typing of Vibrio vulnificus and their correspondence with multilocus sequence typing data. Appl Environ Microbiol 73:7494–7500Google Scholar
  44. Graves LM, Hunter SB, Ong AR, Schoonmaker-Bopp D, Hise K, Kornstein L, DeWitt WE, Hayes PS, Dunne E, Mead P, Swaminathan B (2005) Microbiological aspects of the investigation that traced the 1998 outbreak of listeriosis in the United States to contaminated hot dogs and establishment of molecular subtyping-based surveillance for Listeria monocytogenes in the PulseNet network. J Clin Microbiol 43:2350–2355Google Scholar
  45. Grossman PD, Bloch W, Brinson E, Chang CC, Eggerding FA, Fung S, Iovannisci DM, Woo S, Winn-Deen ES (1994) High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res 22:4527–4534Google Scholar
  46. Guerra MM, Bernardo F, McLauchlin J (2002) Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol 25:456–461Google Scholar
  47. Gurtler V, Mayall BC (2001) Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int J Syst Evol Microbiol 51:3–16Google Scholar
  48. Haff LA, Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res 7:378–388Google Scholar
  49. Hahm BK, Maldonado Y, Schreiber E, Bhunia AK, Nakatsu CH (2003) Subtyping of foodborne and environmental isolates of Escherichia coli by multiplex-PCR, rep-PCR, PFGE, ribotyping and AFLP. J Microbiol Methods 53:387–399Google Scholar
  50. Hall TA, Sampath R, Blyn LB, Ranken R, Ivy C, Melton R, Matthews H, White N, Li F, Harpin V, Ecker DJ, McDougal LK, Limbago B, Ross T, Wolk DM, Wysocki V, Carroll KC (2009) Rapid molecular genotyping and clonal complex assignment of S. aureus isolates by PCR/ESI-MS. J Clin Microbiol 47:1733–1741Google Scholar
  51. Hanninen ML, Hakkinen M, Rautelin H (1999) Stability of related human and chicken Campylobacter jejuni genotypes after passage through chick intestine studied by pulsed-field gel electrophoresis. Appl Environ Microbiol 65:2272–2275Google Scholar
  52. Harvey J, Gilmour A (2001) Characterization of recurrent and sporadic Listeria monocytogenes isolates from raw milk and nondairy foods by pulsed-field gel electrophoresis, monocin typing, plasmid profiling, and cadmium and antibiotic resistance determination. Appl Environ Microbiol 67:840–847Google Scholar
  53. Herrera S, Cabrera R, Ramirez MM, Usera MA, Echeita MA (2002) Use of AFLP, plasmid typing and phenotyping in a comparative study to assess genetic diversity of Shigella flexneri strains. Epidemiol Infect 129:445–450Google Scholar
  54. Hommais F, Pereira S, Acquaviva C, Escobar-Paramo P, Denamur E (2005) Single-nucleotide polymorphism phylotyping of Escherichia coli. Appl Environ Microbiol 71:4784–4792Google Scholar
  55. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19:342–347Google Scholar
  56. Hulton CS, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834Google Scholar
  57. Hunter PR, Gaston MA (1988) Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466Google Scholar
  58. Hyytia-Trees E, Smole SC, Fields PA, Swaminathan B, Ribot EM (2006) Second generation subtyping: a proposed PulseNet protocol for multiple-locus variable-number tandem repeat analysis of Shiga toxin-producing Escherichia coli O157 (STEC O157). Foodborne Pathog Dis 3:118–131Google Scholar
  59. Iversen C, Mullane N, McCardell B, Tall BD, Lehner A, Fanning S, Stephan R, Joosten H (2008) Cronobacter gen. nov., a new genus to accommodate the biogroups of Enterobacter sakazakii, and proposal of Cronobacter sakazakii gen. nov., comb. nov., Cronobacter malonaticus sp. nov., Cronobacter turicensis sp. nov., Cronobacter muytjensii sp. nov., Cronobacter dublinensis sp. nov., Cronobacter genomospecies 1, and of three subspecies, Cronobacter dublinensis subsp. dublinensis subsp. nov., Cronobacter dublinensis subsp. lausannensis subsp. nov. and Cronobacter dublinensis subsp. lactaridi subsp. nov. Int J Syst Evol Microbiol 58:1442–1447Google Scholar
  60. Jacquet C, Catimel B, Brosch R, Buchrieser C, Dehaumont P, Goulet V, Lepoutre A, Veit P, Rocourt J (1995) Investigations related to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl Environ Microbiol 61:2242–2246Google Scholar
  61. Jersek B, Gilot P, Gubina M, Klun N, Mehle J, Tcherneva E, Rijpens N, Herman L (1999) Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. J Clin Microbiol 37:103–109Google Scholar
  62. Jukes TH, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic Press, New York, NYGoogle Scholar
  63. Karenlampi RI, Tolvanen TP, Hanninen ML (2004) Phylogenetic analysis and PCR-restriction fragment length polymorphism identification of Campylobacter species based on partial groEL gene sequences. J Clin Microbiol 42:5731–5738Google Scholar
  64. Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65:1811–1829Google Scholar
  65. Kawamori F, Hiroi M, Harada T, Ohata K, Sugiyama K, Masuda T, Ohashi N (2008) Molecular typing of Japanese Escherichia coli O157: H7 isolates from clinical specimens by multilocus variable-number tandem repeat analysis and PFGE. J Med Microbiol 57:58–63Google Scholar
  66. Keto-Timonen RO, Autio TJ, Korkeala HJ (2003) An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates. Syst Appl Microbiol 26:236–244Google Scholar
  67. Khakhria R, Duck D, Lior H (1990) Extended phage-typing scheme for Escherichia coli O157:H7. Epidemiol Infect 105:511–520Google Scholar
  68. Khambaty FM, Bennett RW, Shah DB (1994) Application of pulsed-field gel electrophoresis to the epidemiological characterization of Staphylococcus intermedius implicated in a food-related outbreak. Epidemiol Infect 113:75–81Google Scholar
  69. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120Google Scholar
  70. Kingombe CI, Cerqueira-Campos ML, Farber JM (2005) Molecular strategies for the detection, identification, and differentiation between enteroinvasive Escherichia coli and Shigella spp. J Food Prot 68:239–245Google Scholar
  71. Koeuth T, Versalovic J, Lupski JR (1995) Differential subsequence conservation of interspersed repetitive Streptococcus pneumoniae BOX elements in diverse bacteria. Genome Res 5:408–418Google Scholar
  72. Koreen L, Ramaswamy SV, Graviss EA, Naidich S, Musser JM, Kreiswirth BN (2004) spa typing method for discriminating among Staphylococcus aureus isolates: implications for use of a single marker to detect genetic micro- and macrovariation. J Clin Microbiol 42:792–799Google Scholar
  73. Lake JA (1994) Reconstructing evolutionary trees from DNA and protein sequences: paralinear distances. Proc Natl Acad Sci USA 91:1455–1459Google Scholar
  74. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959Google Scholar
  75. Leader BT, Frye JG, Hu J, Fedorka-Cray PJ, Boyle DS (2009) High-throughput molecular determination of Salmonella enterica serovars by use of multiplex PCR and capillary electrophoresis analysis. J Clin Microbiol 47:1290–1299Google Scholar
  76. Lemee L, Bourgeois I, Ruffin E, Collignon A, Lemeland JF, Pons JL (2005) Multilocus sequence analysis and comparative evolution of virulence-associated genes and housekeeping genes of Clostridium difficile. Microbiology 151:3171–3180Google Scholar
  77. Litrup E, Torpdahl M, Nielsen EM (2007) Multilocus sequence typing performed on Campylobacter coli isolates from humans, broilers, pigs and cattle originating in Denmark. J Appl Microbiol 103:210–218Google Scholar
  78. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362Google Scholar
  79. Loessner MJ, Busse M (1990) Bacteriophage typing of Listeria species. Appl Environ Microbiol 56:1912–1918Google Scholar
  80. Lomonaco S, Chen Y, Knabel SJ (2008) Analysis of additional virulence genes and virulence gene regions in Listeria monocytogenes confirms the epidemiologic relevance of multi-virulence-locus sequence typing. J Food Prot 71:2559–2566Google Scholar
  81. Maiden MC, Bygraves JA, Feil E, Morelli G, Russell JE, Urwin R, Zhang Q, Zhou J, Zurth K, Caugant DA, Feavers IM, Achtman M, Spratt BG (1998) Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci USA 95:3140–3145Google Scholar
  82. Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM, Mladonicky JM, Somsel P, Rudrik JT, Dietrich SE, Zhang W, Swaminathan B, Alland D, Whittam TS (2008) Variation in virulence among clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci USA 105:4868–4873Google Scholar
  83. Maslanka SE, Kerr JG, Williams G, Barbaree JM, Carson LA, Miller JM, Swaminathan B (1999) Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations. J Clin Microbiol 37:2209–2214Google Scholar
  84. Mazurier SI, Wernars K (1992) Typing of Listeria strains by random amplification of polymorphic DNA. Res Microbiol 143:499–505Google Scholar
  85. McQuiston JR, Parrenas R, Ortiz-Rivera M, Gheesling L, Brenner F, Fields PI (2004) Sequencing and comparative analysis of flagellin genes fliC, fljB, and flpA from Salmonella. J Clin Microbiol 42:1923–1932Google Scholar
  86. Melles DC, van Leeuwen WB, Snijders SV, Horst-Kreft D, Peeters JK, Verbrugh HA, van Belkum A (2007) Comparison of multilocus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and amplified fragment length polymorphism (AFLP) for genetic typing of Staphylococcus aureus. J Microbiol Methods 69:371–375Google Scholar
  87. Miller WG, Englen MD, Kathariou S, Wesley IV, Wang G, Pittenger-Alley L, Siletz RM, Muraoka W, Fedorka-Cray PJ, Mandrell RE (2006) Identification of host-associated alleles by multilocus sequence typing of Campylobacter coli strains from food animals. Microbiology 152:245–255Google Scholar
  88. Mohapatra BR, Broersma K, Mazumder A (2007) Comparison of five rep-PCR genomic fingerprinting methods for differentiation of fecal Escherichia coli from humans, poultry and wild birds. FEMS Microbiol Lett 277:98–106Google Scholar
  89. Murphy M, Corcoran D, Buckley JF, O’Mahony M, Whyte P, Fanning S (2006) Development and application of Multiple-Locus Variable Number of tandem repeat Analysis (MLVA) to subtype a collection of Listeria monocytogenes. Int J Food Microbiol 1435–1450Google Scholar
  90. Nadon CA, Woodward DL, Young C, Rodgers FG, Wiedmann M (2001) Correlations between molecular subtyping and serotyping of Listeria monocytogenes. J Clin Microbiol 39:2704–2707Google Scholar
  91. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, OxfordGoogle Scholar
  92. Nei M, Tajima F (1985) Evolutionary change of restriction cleavage sites and phylogenetic inference for man and apes. Mol Biol Evol 2:189–205Google Scholar
  93. Neves E, Lourenco A, Silva AC, Coutinho R, Brito L (2008) Pulsed-field gel electrophoresis (PFGE) analysis of Listeria monocytogenes isolates from different sources and geographical origins and representative of the twelve serovars. Syst Appl Microbiol 31:387–392Google Scholar
  94. Nightingale KK, Ivy RA, Ho AJ, Fortes ED, Njaa BL, Peters RM, Wiedmann M (2008) inlA premature stop codons are common among Listeria monocytogenes isolates from foods and yield virulence-attenuated strains that confer protection against fully virulent strains. Appl Environ Microbiol 74:6570–6583Google Scholar
  95. Nightingale KK, Windham K, Wiedmann M (2005) Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol 187:5537–5551Google Scholar
  96. Nilsson M, Malmgren H, Samiotaki M, Kwiatkowski M, Chowdhary BP, Landegren U (1994) Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265:2085–2088Google Scholar
  97. Notermans S, Chakraborty T, Leimeister-Wachter M, Dufrenne J, Heuvelman KJ, Maas H, Jansen W, Wernars K, Guinee P (1989) Specific gene probe for detection of biotyped and serotyped Listeria strains. Appl Environ Microbiol 55:902–906Google Scholar
  98. Orsi RH, Borowsky ML, Lauer P, Young SK, Nusbaum C, Galagan JE, Birren BW, Ivy RA, Sun Q, Graves LM, Swaminathan B, Wiedmann M (2008) Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics 9:539Google Scholar
  99. Orskov F, Orskov I (1983) From the national institutes of health. Summary of a workshop on the clone concept in the epidemiology, taxonomy, and evolution of the Enterobacteriaceae and other bacteria. J Infect Dis 148:346–357Google Scholar
  100. Paillard D, Dubois V, Duran R, Nathier F, Guittet C, Caumette P, Quentin C (2003) Rapid identification of Listeria species by using restriction fragment length polymorphism of PCR-amplified 23S rRNA gene fragments. Appl Environ Microbiol 69:6386–6392Google Scholar
  101. Pati N, Schowinsky V, Kokanovic O, Magnuson V, Ghosh S (2004) A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost, and throughput. J Biochem Biophys Methods 60:1–12Google Scholar
  102. Persing DH, Tenover FC, Versalovic J, Tang Y-W, Unger ER, David MDR, White TJ 2003. Molecular microbiology: diagnostic principles and practice. ASM Press, Washington, DCGoogle Scholar
  103. Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55:856–866Google Scholar
  104. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M (2001) Detection of Escherichia coli O157:H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. J Microbiol Methods 46:131–139Google Scholar
  105. Ralovich B, Ewan EP, Emody L (1986) Alteration of phage- and biotypes of Listeria strains. Acta Microbiol Hung 33:19–26Google Scholar
  106. Rementeria A, Gallego L, Quindos G, Garaizar J (2001) Comparative evaluation of three commercial software packages for analysis of DNA polymorphism patterns. Clin Microbiol Infect 7:331–336Google Scholar
  107. Riley LW (2004) Molecular epidemiology of infectious diseases: principles and practices. ASM Press, Washington, DCGoogle Scholar
  108. Ripabelli G, McLauchin J, Threlfall EJ (2000) Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol 23:132–136Google Scholar
  109. Romanova N, Favrin S, Griffiths MW (2002) Sensitivity of Listeria monocytogenes to sanitizers used in the meat processing industry. Appl Environ Microbiol 68:6405–6409Google Scholar
  110. Saidijam M, Psakis G, Clough JL, Meuller J, Suzuki S, Hoyle CJ, Palmer SL, Morrison SM, Pos MK, Essenberg RC, Maiden MC, Abu-bakr A, Baumberg SG, Neyfakh AA, Griffith JK, Stark MJ, Ward A, O’Reilly J, Rutherford NG, Phillips-Jones MK, Henderson PJ (2003) Collection and characterisation of bacterial membrane proteins. FEBS Lett 555:170–175Google Scholar
  111. Sails AD, Swaminathan B, Fields PI (2003) Utility of multilocus sequence typing as an epidemiological tool for investigation of outbreaks of gastroenteritis caused by Campylobacter jejuni. J Clin Microbiol 41:4733–4739Google Scholar
  112. Salcedo C, Arreaza L, Alcala B, de la Fuente L, Vazquez JA (2003) Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J Clin Microbiol 41:757–762Google Scholar
  113. Sauders BD, Fortes ED, Morse DL, Dumas N, Kiehlbauch JA, Schukken Y, Hibbs JR, Wiedmann M (2003) Molecular subtyping to detect human listeriosis clusters. Emerg Infect Dis 9:672–680Google Scholar
  114. Sauer S, Lechner D, Berlin K, Lehrach H, Escary JL, Fox N, Gut IG (2000) A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res 28:E13Google Scholar
  115. Schwartz DC, Cantor CR (1984) Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75Google Scholar
  116. Senczek D, Stephan R, Untermann F (2000) Pulsed-field gel electrophoresis (PFGE) typing of Listeria strains isolated from a meat processing plant over a 2-year period. Int J Food Microbiol 62:155–159Google Scholar
  117. Shumaker JM, Metspalu A, Caskey CT (1996) Mutation detection by solid phase primer extension. Hum Mutat 7:346–354Google Scholar
  118. Singer RS, Sischo WM, Carpenter TE (2004) Exploration of biases that affect the interpretation of restriction fragment patterns produced by pulsed-field gel electrophoresis. J Clin Microbiol 42:5502–5511Google Scholar
  119. Sobrino B, Brion M, Carracedo A (2005) SNPs in forensic genetics: a review on SNP typing methodologies. Forensic Sci Int 154:181–194Google Scholar
  120. Sobrino B, Carracedo A (2005) SNP typing in forensic genetics: a review. Methods Mol Biol 297:107–126Google Scholar
  121. Sorum H, Hvaal AB, Heum M, Daae FL, Wiik R (1990) Plasmid profiling of Vibrio salmonicida for epidemiological studies of cold-water vibriosis in Atlantic salmon (Salmo salar) and cod (Gadus morhua). Appl Environ Microbiol 56:1033–1037Google Scholar
  122. Struelens MJ (1996) Consensus guidelines for appropriate use and evaluation of microbial epidemiologic typing systems. Clin Microbiol Infect 2:2–11Google Scholar
  123. Swaminathan B, Barrett TJ, Hunter SB, Tauxe RV (2001) PulseNet: the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis 7:382–389Google Scholar
  124. Tamura K (1992) Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Mol Biol Evol 9:678–687Google Scholar
  125. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526Google Scholar
  126. Tankouo-Sandjong B, Sessitsch A, Liebana E, Kornschober C, Allerberger F, Hachler H, Bodrossy L (2007) MLST-v, multilocus sequence typing based on virulence genes, for molecular typing of Salmonella enterica subsp. enterica serovars. J Microbiol Methods 69:23–36Google Scholar
  127. Tardif G, Sulavik MC, Jones GW, Clewell DB (1989) Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun 57:3945–3948Google Scholar
  128. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239Google Scholar
  129. van Belkum A (2003) High-throughput epidemiologic typing in clinical microbiology. Clin Microbiol Infect 9:86–100Google Scholar
  130. van Belkum A, Struelens M, de Visser A, Verbrugh H, Tibayrenc M (2001) Role of genomic typing in taxonomy, evolutionary genetics, and microbial epidemiology. Clin Microbiol Rev 14:547–560Google Scholar
  131. Van Stelten A, Nightingale KK (2008) Development and implementation of a multiplex single-nucleotide polymorphism genotyping assay for detection of virulence-attenuating mutations in the Listeria monocytogenes virulence-associated gene inlA. Appl Environ Microbiol 74:7365–7375Google Scholar
  132. Vines A, Reeves MW, Hunter S, Swaminathan B (1992) Restriction fragment length polymorphism in four virulence-associated genes of Listeria monocytogenes. Res Microbiol 143:281–294Google Scholar
  133. Vogel L, van Oorschot E, Maas HM, Minderhoud B, Dijkshoorn L (2000) Epidemiologic typing of Escherichia coli using RAPD analysis, ribotyping and serotyping. Clin Microbiol Infect 6:82–87Google Scholar
  134. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280:1077–1082Google Scholar
  135. Ward TJ, Gorski L, Borucki MK, Mandrell RE, Hutchins J, Pupedis K (2004) Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol 186:4994–5002Google Scholar
  136. Wassenaar TM (2003) Molecular typing of pathogens. Berl Munch Tierarztl Wochenschr 116:447–453Google Scholar
  137. Wiedmann M (2002) Molecular subtyping methods for Listeria monocytogenes. J AOAC Int 85:524–531Google Scholar
  138. Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997) Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65:2707–2716Google Scholar
  139. Wilhelms D, Sandow D (1989) Preliminary studies on monocine typing of Listeria monocytogenes strains. Acta Microbiol Hung 36:235–238Google Scholar
  140. Wulff G, Gram L, Ahrens P, Vogel BF (2006) One group of genetically similar Listeria monocytogenes strains frequently dominates and persists in several fish slaughter- and smokehouses. Appl Environ Microbiol 72:4313–4322Google Scholar
  141. Yang Z, Rannala B (1997) Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo method. Mol Biol Evol 14:717–724Google Scholar
  142. Yoshida C, Franklin K, Konczy P, McQuiston JR, Fields PI, Nash JH, Taboada EN, Rahn K (2007) Methodologies towards the development of an oligonucleotide microarray for determination of Salmonella serotypes. J Microbiol Methods 70:261–271Google Scholar
  143. Zabeau M, Vos P (1993) AFLP: not only for fingerprinting, but for positional cloning. European Patent Application, EP 0534858Google Scholar
  144. Zhang W, Jayarao BM, Knabel SJ (2004) Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl Environ Microbiol 70:913–920Google Scholar
  145. Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, Hyytia-Trees EK, Ribot EM, Fields PI, Whittam TS, Swaminathan B (2006) Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 16:757–767Google Scholar
  146. Zharkikh A (1994) Estimation of evolutionary distances between nucleotide sequences. J Mol Evol 39:315–329Google Scholar
  147. Zheng J, Keys CE, Zhao S, Meng J, Brown EW (2007) Enhanced subtyping scheme for Salmonella enteritidis. Emerg Infect Dis 13:1932–1935Google Scholar

Copyright information

© Springer New York 2011

Authors and Affiliations

  1. 1.Center for Food Safety and Applied Nutrition, US Food and Drug AdministrationCollege ParkUSA
  2. 2.Department of Food SciencePennsylvania State UniversityUniversity ParkUSA

Personalised recommendations