Skip to main content

Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens

  • Chapter
  • First Online:
  • 1519 Accesses

Part of the book series: Food Microbiology and Food Safety ((FMFS))

Abstract

DNA microarrays (often interchangeably called DNA chips or DNA arrays) are among the most popular analytical tools for high-throughput comparative genomic and transcriptomic analyses of foodborne bacterial pathogens. A typical DNA microarray contains hundreds to millions of small DNA probes that are chemically attached (or “printed”) onto the surface of a microscopic glass slide. Depending on the specific “printing” and probe synthesis technologies for different microarray platforms, such DNA probes can be PCR amplicons or in situ synthesized short oligonucleotides. DNA microarray technologies have revolutionized the way that we investigate the biology of foodborne bacterial pathogens. The major advantage of these technologies is that DNA microarrays allow comparison of subtle genomic or transcriptomic variations between two bacterial samples, such as genomic variations between two different bacterial strains or transcriptomic alterations of same bacterial strain under two different treatments. Some applications of comparative genomic hybridization microarrays and global gene expression microarrays have been covered in previous chapters of this book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albert TJ, Dailidiene D, Dailide G, Norton JE, Kalia A, Richmond TA, Molla M, Singh J, Green RD, Berg DE (2005) Mutation discovery in bacterial genomes: metronidazole resistance in Helicobacter pylori. Nat Methods 2:951–953

    Article  CAS  Google Scholar 

  • Albert TJ, Norton J, Ott M, Richmond T, Nuwaysir K, Nuwaysir EF, Stengele KP, Green RD (2003) Light-directed 5→3 synthesis of complex oligonucleotide microarrays. Nucleic Acids Res 31:35–44

    Article  Google Scholar 

  • Albrecht M, Sharma CM, Reinhardt R, Vogel J, Rudel T (2010) Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res 38:868–877

    Article  CAS  Google Scholar 

  • Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28–36

    CAS  Google Scholar 

  • Baroni TE, Chittur SV, George AD, Tenenbaum SA (2008) Advances in RIP-chip analysis: RNA-binding protein immunoprecipitation microarray profiling. Methods Mol Biol 419:93–108

    Article  CAS  Google Scholar 

  • Bayjanov JR, Wels M, Starrenburg M, van Hylckama Vlieg JE, Siezen RJ, Molenaar D (2009) PanCGH: a genotype-calling algorithm for pangenome CGH data. Bioinformatics 25(3):309–314

    Article  CAS  Google Scholar 

  • Bentley S (2009) Sequencing the species pan-genome. Nat Rev Microbiol 7(4):258–259

    Article  CAS  Google Scholar 

  • Ben-Yehuda S, Fujita M, Liu XS, Gorbatyuk B, Skoko D, Yan J, Marko JF, Liu JS, Eichenberger P, Rudner DZ, Losick R (2005) Defining a centromere-like element in Bacillus subtilis by identifying the binding sites for the chromosome-anchoring protein RacA. Mol Cell 18:773–782

    Article  Google Scholar 

  • Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–536

    Article  CAS  Google Scholar 

  • Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19(2):185–193

    Article  CAS  Google Scholar 

  • Buck MJ, Lieb JD (2004) ChIP-chip: considerations for the design, analysis, and application of genome-wide chromatin immunoprecipitation experiments. Genomics 83:349–360

    Article  CAS  Google Scholar 

  • Carter B, Wu G, Woodward MJ, Anjum MF (2008) A process for analysis of microarray comparative genomics hybridisation studies for bacterial genomes. BMC Genomics 9:53

    Article  Google Scholar 

  • Cho BK, Knight EM, Palsson BO (2006) PCR-based tandem epitope tagging system for Escherichia coli genome engineering. Biotechniques 40:67–72

    Article  CAS  Google Scholar 

  • Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  Google Scholar 

  • Croucher NJ, Fookes MC, Perkins TT, Turner DJ, Marguerat SB, Keane T, Quail MA, He M, Assefa S, Bahler J, Kingsley RA, Parkhill J, Bentley SD, Dougan G, Thomson NR (2009) A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Res 37:e148

    Article  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  CAS  Google Scholar 

  • Deng X, Phillippy AM, Li Z, Salzberg SL, Zhang W (2010) Probing the pan-genome of Listeria monocytogenes: new insights into intraspecific niche expansion and genomic diversification. BMC Genomics 11:500

    Google Scholar 

  • Dornenburg JE, DeVita AM, Palumbo MJ, Wade JT (2010). Widespread antisense transcription in Escherichia coli. mBio 1, e00024–10

    Google Scholar 

  • Doumith M, Cazalet C, Simoes N, Frangeul L, Jacquet C, Kunst F, Martin P, Cossart P, Glaser P, Buchrieser C (2004) New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect Immun 72(2):1072–1083

    Article  CAS  Google Scholar 

  • Dühring U, Axmann IM, Hess WR, Wilde A (2006) An internal antisense RNA regulates expression of the photosynthesis gene isiA. Proc Natl Acad Sci USA 103:7054–7058

    Article  Google Scholar 

  • Freitag NE, Port GC, Miner MD (2009) Listeria monocytogenes – from saprophyte to intracellular pathogen. Nat Rev Microbiol 7(9):623–628

    Article  CAS  Google Scholar 

  • Gao F, Foat BC, Bussemaker HJ (2004) Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 5:31

    Article  Google Scholar 

  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  Google Scholar 

  • Gilbert C, Kristjuhan A, Winkler GS, Svejstrup JQ (2004) Elongator interactions with nascent mRNA revealed by RNA immunoprecipitation. Mol Cell 14:457–464

    Article  CAS  Google Scholar 

  • Grainger DC, Hurd D, Goldberg MD, Busby SJ (2006) Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Res 34:4642–4652

    Article  CAS  Google Scholar 

  • Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ (2005) Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 102:17693–17698

    Article  CAS  Google Scholar 

  • Hafner M, Landthaler M, Burger L, Khorsid M, Hausser J, Berninger P, Rothballer A, Ascano MJ, Jungkamp A, Munschauser M, Ulrich A, Wardle GS, Dewell S, Zavolan L, Tuschl T (2010) Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141

    Article  CAS  Google Scholar 

  • Herring CD, Rafaelle M, Allen TE, Kanin EI, Landick R, Ansari AZ, Palsson BO (2005) Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J Bacteriol 187:6166–6174

    Article  CAS  Google Scholar 

  • Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, Keefe R, Ehrlich NE, Shen K, Hayes J et al (2007) Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol 189(22):8186–8195

    Article  CAS  Google Scholar 

  • Hogg JS, Hu FZ, Janto B, Biossy R, Hayes J, Keefe R, Post JC, Ehrlich GD (2007) Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol 8:R103

    Article  Google Scholar 

  • Hu P, Janga SC, Babu M, Díaz-Mejía JJ, Yang BGW, Pogoutse O, Guo X, Phanse S, Wong P, Chandran S, Christopoulos C, Nazarians-Armavil A, Nasseri NK, Musso G, Ali M, Nazemof N, Eroukova V, Golshani A, Paccanaro A, Greenblatt JF, Moreno-Hagelsieb G, Emili A (2009) Global functional atlas of Escherichia coli encompassing previously uncharacterized proteins. PLoS Biol 7:e96

    Article  Google Scholar 

  • Hu Z, Killion PJ, Iyer VR (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nat Genet 39:683–687

    Article  CAS  Google Scholar 

  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O’Shea EK (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691

    Article  CAS  Google Scholar 

  • Huson DH, Steel M (2004) Phylogenetic trees based on gene content. Bioinformatics 20(13):2044–2049

    Article  CAS  Google Scholar 

  • Kathariou S (2002) Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65(11):1811–1829

    Google Scholar 

  • Kim W, Silby MW, Purvine SO, Nicoll JS, Hixson KK, Monroe M, Nicora CD, Lipton MS, Levy SB (2009) Proteomic detection of non-annotated protein-coding genes in Pseudomonas fluorescens Pf0-1. PLoS ONE 4:e8455

    Article  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  Google Scholar 

  • Lapierre P, Gogarten JP (2009) Estimating the size of the bacterial pan-genome. Trends Genet 25(3):107–110

    Article  CAS  Google Scholar 

  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK, Young RA (2002) Transcriptional regulatory networks in Saccharomyces cerevisiae. Science 298:799–804

    Article  CAS  Google Scholar 

  • Lee JM, Zhang S, Saha S, Santa Anna S, Jiang C, Perkins J (2001) RNA expression analysis using an antisense Bacillus subtilis genome array. J Bacteriol 183:7371–7380

    Article  CAS  Google Scholar 

  • Lefebure T, Stanhope MJ (2007) Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8(5):R71

    Article  Google Scholar 

  • Lefrancois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M (2009) Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 10:37

    Article  Google Scholar 

  • Liu JM, Camilli A (2010) A broadening world of bacterial small RNAs. Curr Opin Microbiol 13:18–23

    Article  CAS  Google Scholar 

  • Liu JM, Livny J, Lawrence MS, Kimball MD, Waldor MK, Camilli A (2009) Experimental discovery of sRNAs in Vibrio cholerae by direct cloning, 5S/tRNA depletion and parallel sequencing. Nucleic Acids Res 37:e46

    Article  Google Scholar 

  • Lucchini S, McDermott P, Thompson A, Hinton JC (2009) The H-NS-like protein StpA represses the RpoS (s38) regulon during exponential growth of Salmonella Typhimurium. Mol Microbiol 74:1169–1186

    Article  CAS  Google Scholar 

  • Lucchini S, Rowley G, Goldberg MD, Hurd D, Harrison M, Hinton JC (2006) H-NS mediates the silencing of laterally acquired genes in Bacteria. PLoS Pathog 18:2

    Google Scholar 

  • MacLellan SR, Eiamphungporn W, Helmann JD (2009) ROMA: an in vitro approach to defining target genes for transcription regulators. Methods 47:73–77

    Article  CAS  Google Scholar 

  • Mao C, Evans C, Jensen R, Sobral B (2008) Identification of new genes in Sinorhizobium meliloti using the Genome Sequencer FLX system. BMC Microbiol 8:72

    Article  Google Scholar 

  • Medini D, Donati C, Tettelin H, Masignani V, Rappuoli R (2005) The microbial pan-genome. Curr Opin Genet Dev 15(6):589–594

    Article  CAS  Google Scholar 

  • Mockler TC, Chan S, Sundaresan A, Chen H, Jacobsen SE, Ecker JR (2005) Applications of DNA tiling arrays for whole-genome analysis. Genomics 85(1):1–15

    Article  CAS  Google Scholar 

  • Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M (2008) The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:1344–1349

    Article  CAS  Google Scholar 

  • Navarre WW, Porwollik S, Wang Y, McClelland M, Rosen H, Libby SJ, Fang FC (2006) Selective silencing of foreign DNA with low GC content by the H-NS protein in Salmonella. Science 313:236–238

    Article  CAS  Google Scholar 

  • Nuwaysir EF, Huang W, Albert TJ, Singh J, Nuwaysir K, Pitas A, Richmond T, Gorski T, Berg JP, Ballin J et al (2002) Gene expression analysis using oligonucleotide arrays produced by maskless photolithography. Genome Res 12:1749–1755

    Article  CAS  Google Scholar 

  • Oliver H, Orsi R, Ponnala L, Keich U, Wang W, Sun Q, Cartinhour S, Filiatrault M, Wiedmann M, Boor K (2009) Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 10:641

    Article  Google Scholar 

  • Oshima T, Ishikawa S, Kurokawa K, Aiba H, Ogasawara N (2006) Escherichia coli histone-like protein H-NS preferentially binds to horizontally acquired DNA in association with RNA polymerase. DNA Res 13:141–153

    Article  CAS  Google Scholar 

  • Parameswaran P, Jalili R, Tao L, Shokralla S, Gharizadeh B, Ronaghi M, Fire AZ (2007) A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res 35:e130

    Article  Google Scholar 

  • Pepke S, Wold B, Mortazavi A (2009) Computation for ChIP-seq and RNA-seq studies. Nat Methods 6:S22–S32

    Article  CAS  Google Scholar 

  • Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, Assefa SA, He M, Croucher NJ, Pickard DJ, Maskell DJ, Parkhill J, Choudhary J, Thomson NR, Dougan G (2009) A strand-specific RNA-Seq analysis of the transcriptome of the typhoid bacillus Salmonella Typhi. PLoS Genet 5:e1000569

    Article  Google Scholar 

  • Phillippy AM, Deng X, Zhang W, Salzberg SL (2009) Efficient oligonucleotide probe selection for pan genomic tiling arrays. BMC Bioinformatics 10:293

    Article  Google Scholar 

  • Rasko DA, Rosovitz MJ, Myers GS, Mongodin EF, Fricke WF, Gajer P, Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R et al (2008) The pangenome structure of Escherichia coli: comparative genomic analysis of E. coli commensal and pathogenic isolates. J Bacteriol 190(20):6881–6893

    Article  CAS  Google Scholar 

  • Rasmussen OF, Skouboe P, Dons L, Rossen L, Olsen JE (1995) Listeria monocytogenes exists in at least three evolutionary lines: evidence from flagellin, invasive associated protein and listeriolysin O genes. Microbiology 141:2053–2061

    Article  CAS  Google Scholar 

  • Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM et al (2002) Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 296:2028–2033

    Article  CAS  Google Scholar 

  • Reppas NB, Wade JT, Church G, Struhl K (2006) The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate-limiting. Mol Cell 24:747–757

    Article  CAS  Google Scholar 

  • Rhodius VA, Wade JT (2009) Technical considerations in using DNA microarrays to define regulons. Methods 47:63–72

    Article  CAS  Google Scholar 

  • Schoen C, Blom J, Claus H, Schramm-Gluck A, Brandt P, Muller T, Goesmann A, Joseph B, Konietzny S, Kurzai O et al (2008) Whole-genome comparison of disease and carriage strains provides insights into virulence evolution in Neisseria meningitidis. Proc Natl Acad Sci USA 105(9):3473–3478

    Article  CAS  Google Scholar 

  • Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, Lockhart DJ, Church GM (2000) RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat Biotech 18:1262–1268

    Article  CAS  Google Scholar 

  • Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermüller J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–255

    Article  CAS  Google Scholar 

  • Shimada T, Ishihama A, Busby SJ, Grainger DC (2008) The Escherichia coli RutR transcription factor binds at targets within genes as well as intergenic regions. Nucleic Acids Res 36:3950–3955

    Article  CAS  Google Scholar 

  • Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotechnol 17:974–978

    Article  CAS  Google Scholar 

  • Tachibana C, Yoo JY, Tagne JB, Kacherovsky N, Lee TI, Young ET (2005) Combined global localization analysis and transcriptome data identify genes that are directly coregulated by Adr1 and Cat8. Mol Cel Biol 25:2138–2146

    Article  CAS  Google Scholar 

  • Tanay A (2006) Extensive low-affinity transcriptional interactions in the yeast genome. Genome Res 16:962–972

    Article  CAS  Google Scholar 

  • Taylor J, Schenck I, Blankenberg D, Nekrutenko A (2007) Using Galaxy to perform large-scale interactive data analyses. Curr Protoc Bioinform 19:10.5.1–10.5.25

    Google Scholar 

  • Tettelin H, Masignani V, Cieslewicz MJ, Donati C, Medini D, Ward NL, Angiuoli SV, Crabtree J, Jones AL, Durkin AS et al (2005) Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial “pan-genome”. Proc Natl Acad Sci USA 102(39):13950–13955

    Article  CAS  Google Scholar 

  • Tettelin H, Riley D, Cattuto C, Medini D (2008) Comparative genomics: the bacterial pan-genome. Curr Opin Microbiol 11(5):472–477

    Article  CAS  Google Scholar 

  • Thijs IM, De Keersmaecker SC, Fadda A, Engelen K, Zhao H, McClelland M, Marchal K, Vanderleyden J (2007) Delineation of the Salmonella enterica serovar Typhimurium HilA regulon through genome-wide location and transcript analysis. J Bacteriol 189:4587–4596

    Article  CAS  Google Scholar 

  • Tomljenovic-Berube AM, Mulder DT, Whiteside MD, Brinkman FS, Coombes BK (2010) Identification of the regulatory logic controlling Salmonella pathoadaptation by the SsrA-SsrB two-component system. PLoS Genet 6:e1000875

    Article  Google Scholar 

  • Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, Bonacorsi S, Bouchier C, Bouvet O et al (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5(1):e1000344

    Article  Google Scholar 

  • Uzzau S, Figueroa-Bossi N, Rubino S, Bossi L (2001) Epitope tagging of chromosomal genes in Salmonella. Proc Natl Acad Sci USA 98:15264–15269

    Article  CAS  Google Scholar 

  • Wade JT, Reppas NB, Church GM, Struhl K (2005) Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 19:2619–2630

    Article  CAS  Google Scholar 

  • Wade JT, Roa DC, Grainger DC, Hurd D, Busby SJW, Struhl K, Nudler E (2006) Extensive functional overlap between sigma factors in Escherichia coli. Nat Struct Mol Biol 13:806–814

    Article  CAS  Google Scholar 

  • Wade JT, Struhl K, Busby SJ, Grainger DC (2007) Genomic analysis of protein-DNA interactions in bacteria: insights into transcription and chromosome organization. Mol Microbiol 65:21–26

    Article  CAS  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  Google Scholar 

  • Wiedmann M, Bruce JL, Keating C, Johnson AE, McDonough PL, Batt CA (1997) Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun 65(7):2707–2716

    CAS  Google Scholar 

  • Willenbrock H, Hallin PF, Wassenaar TM, Ussery DW (2007) Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray. Genome Biol 8(12):R267

    Article  Google Scholar 

  • Wong CW, Albert TJ, Vega VB, Norton JE, Culter DJ, Richmond TA, Stanton LW, Liu ET, Miller LD (2004) Tracking the evolution of the SARS coronavirus using high-throughput, high-density resequencing arrays. Genome Res 14:398–405

    Article  CAS  Google Scholar 

  • Yoder-Himes DR, Chain PSG, Zhu Y, Wurtzel O, Rubin EM, Tiedje JM, Sorek R (2009) Mapping the Burkholderia cenocepacia niche response via high-throughput sequencing. Proc Natl Acad Sci USA 106:3976–3981

    Article  CAS  Google Scholar 

  • Zhang W, Jayarao BM, Knabel SJ (2004) Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl Environ Microbiol 70(2):913–920

    Article  CAS  Google Scholar 

  • Zhang W, Qi W, Albert TJ, Motiwala AS, Alland D, Hyytia-Trees EK, Ribot EM, Fields PI, Whittam TS, Swaminathan B (2006) Probing genomic diversity and evolution of Escherichia coli O157 by single nucleotide polymorphisms. Genome Res 16:757–767

    Article  CAS  Google Scholar 

  • Zwick ME, Mcafee F, Culter DJ, Read TD, Ravel J, Bowman GR, Galloway DR, Mateczun A (2004) Microarray-based resequencing of multiple Bacillus anthracis isolates. Genome Biol 6:R10

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Zhang, W., Dudley, E.G., Wade, J.T. (2011). Genomic and Transcriptomic Analyses of Foodborne Bacterial Pathogens. In: Wiedmann, M., Zhang, W. (eds) Genomics of Foodborne Bacterial Pathogens. Food Microbiology and Food Safety. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7686-4_10

Download citation

Publish with us

Policies and ethics