Chicken Models of Retroviral Insertional Mutagenesis

  • Vladimír Pečenka
  • Petr Pajer
  • Vít Karafiát
  • Michal Dvořák


The concept of transposon tagging or insertional mutagenesis as a strategy for fishing out genes connected with the phenotype of interest was emerging since the early 1980s. Study of genetic basis of tumorigenesis is one of the fields where insertional mutagenesis proved to be exceptionally powerful. Crucial elements of this experimental approach have been retroviruses whose unique properties have revolutionized the work in the field of oncogenesis. Retroviruses contributed to our knowledge of tumor formation in two ways. First, some of them transduce oncogenes—mutants of normal cellular genes with an oncogenic potential. And it was the comparison of viral and cellular alleles of these genes that allowed comprehending the principles of oncogenic activation of genes. Second, retroviruses not carrying oncogenes can induce tumors by affecting host genes. Through integration of their proviral DNA into chromosomes they can activate tumorigenic potential of oncogenes or inactivate tumor suppressor genes. The mechanism is referred to as oncogenesis by insertional mutagenesis. The insertional mutagenesis by retroviruses is very efficient. Perhaps each locus of a host genome can be hit by the provirus insertion in many cells of an infected tissue. If any of these insertions or their combinations incites malignant transformation, the touched cell outgrows and can give rise to a tumor. Affected host gene loci can be easily identified since they are tagged by integrated proviral sequences.


Long Terminal Repeat Cancer Gene Insertional Mutagenesis Avian Leukosis Virus Transcriptional Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adhya, S., & Gottesman, M. (1982). Promoter occlusion: Transcription through a promoter may inhibit its activity. Cell, 29, 939–944.PubMedCrossRefGoogle Scholar
  2. 2.
    Ansieau, S., Bastid, J., Doreau, A., Morel, A. P., Bouchet, B. P., Thomas, C., et al. (2008). Induction of EMT by twist proteins as a collateral effect of tumor-promoting inactivation of premature senescence. Cancer Cell, 14, 79–89.PubMedCrossRefGoogle Scholar
  3. 3.
    Arrigo, S., Yun, M., & Beemon, K. (1987). cis-acting regulatory elements within gag genes of avian retroviruses. Molecular and Cellular Biology, 7, 388–397.PubMedGoogle Scholar
  4. 4.
    Baba, T. W., & Humphries, E. H. (1985). Formation of a transformed follicle is necessary but not sufficient for development of an avian leukosis virus-induced lymphoma. Proceedings of the National Academy of Sciences of the USA, 82, 213–216.PubMedCrossRefGoogle Scholar
  5. 5.
    Bahrami, S., Duch, M., & Pedersen, F. S. (2004). Change of tropism of SL3-2 murine leukemia virus, using random mutational libraries. Journal of Virology, 78, 9343–9351.PubMedCrossRefGoogle Scholar
  6. 6.
    Ball, J. K., Diggelmann, H., Dekaban, G. A., Grossi, G. F., Semmler, R., Waight, P. A., et al. (1988). Alterations in the U3 region of the long terminal repeat of an infectious thymotropic type B retrovirus. Journal of Virology, 62, 2985–2993.PubMedGoogle Scholar
  7. 7.
    Beard, J. W., Chabot, J. F., Beard, D., Heine, U., & Houts, G. E. (1976). Renal neoplastic response to leukosis virus strains BAI A (avian myeloblastosis virus) and MC29. Cancer Research, 36, 339–353.PubMedGoogle Scholar
  8. 8.
    Beemon, K. L., O‘Reilly, M. M., Smith, M. R., Smith, R. E., Dunkel, I., & Hayward, W. S. (1997). Rapid induction of B-cell lymphomas by avian leukosis virus. Leukemia, 11(Suppl 3), 179–182.PubMedGoogle Scholar
  9. 9.
    Bird, K. J., Semus, H. L., & Ruddell, A. (1999). Resistance to avian leukosis virus lymphomagenesis occurs subsequent to proviral c-myc integration. Oncogene, 18, 201–209.PubMedCrossRefGoogle Scholar
  10. 10.
    Boerkoel, C. F., & Kung, H. J. (1992). Transcriptional interaction between retroviral long terminal repeats (LTRs): Mechanism of 5' LTR suppression and 3' LTR promoter activation of c-myc in avian B-cell lymphomas. Journal of Virology, 66, 4814–4823.PubMedGoogle Scholar
  11. 11.
    Boni-Schnetzler, M., Boni, J., Ferdinand, F. J., & Franklin, R. M. (1985). Developmental and molecular aspects of nephroblastomas induced by avian myeloblastosis-associated virus 2-O. Journal of Virology, 55, 213–222.PubMedGoogle Scholar
  12. 12.
    Brandvold, K. A., Ewert, D. L., Kent, S. C., Neiman, P., & Ruddell, A. (2001). Blocked B cell differentiation and emigration support the early growth of Myc-induced lymphomas. Oncogene, 20, 3226–3234.PubMedCrossRefGoogle Scholar
  13. 13.
    Brauer, P. M., & Tyner, A. L. (2009). RAKing in AKT: A tumor suppressor function for the intracellular tyrosine kinase FRK. Cell Cycle, 8, 2728–2732.PubMedCrossRefGoogle Scholar
  14. 14.
    Broussard, D. R., Mertz, J. A., Lozano, M., & Dudley, J. P. (2002). Selection for c-myc integration sites in polyclonal T-cell lymphomas. Journal of Virology, 76, 2087–2099.PubMedCrossRefGoogle Scholar
  15. 15.
    Brown, D. W., Blais, B. P., & Robinson, H. L. (1988). Long terminal repeat (LTR) sequences, env, and a region near the 5' LTR influence the pathogenic potential of recombinants between Rous-associated virus types 0 and 1. Journal of Virology, 62, 3431–3437.PubMedGoogle Scholar
  16. 16.
    Burmester, B. R., & Waters, N. F. (1955). The role of the infected egg in the transmission of visceral lymphomatosis. Poultry Science, 34, 1415–1429.Google Scholar
  17. 17.
    Bushman, F., Lewinski, M., Ciuffi, A., Barr, S., Leipzig, J., Hannenhalli, S., et al. (2005). Genome-wide analysis of retroviral DNA integration. Nature Reviews Microbiology, 3, 848–858.PubMedCrossRefGoogle Scholar
  18. 18.
    Buttel, I., Fechter, A., & Schwab, M. (2004). Common fragile sites and cancer: Targeted cloning by insertional mutagenesis. Annals of the New York Academy Science, 1028, 14–27.Google Scholar
  19. 19.
    Cance, W. G., Craven, R. J., Bergman, M., Xu, L., Alitalo, K., & Liu, E. T. (1994). Rak, a novel nuclear tyrosine kinase expressed in epithelial cells. Cell Growth and Differentiation, 5, 1347–1355.PubMedGoogle Scholar
  20. 20.
    Ceci, J. D., Patriotis, C. P., Tsatsanis, C., Makris, A. M., Kovatch, R., Swing, D. A., et al. (1997). Tpl-2 is an oncogenic kinase that is activated by carboxy-terminal truncation. Genes and Development, 11, 688–700.PubMedCrossRefGoogle Scholar
  21. 21.
    Chandrasekharan, S., Qiu, T. H., Alkharouf, N., Brantley, K., Mitchell, J. B., & Liu, E. T. (2002). Characterization of mice deficient in the Src family nonreceptor tyrosine kinase Frk/rak. Molecular and Cellular Biology, 22, 5235–5247.PubMedCrossRefGoogle Scholar
  22. 22.
    Cheng, G. Z., Zhang, W., & Wang, L. H. (2008). Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Research, 68, 957–960.PubMedCrossRefGoogle Scholar
  23. 23.
    Clurman, B. E., & Hayward, W. S. (1989). Multiple proto-oncogene activations in avian leukosis virus-induced lymphomas: Evidence for stage-specific events. Molecular and Cellular Biology, 9, 2657–2664.PubMedGoogle Scholar
  24. 24.
    Cochrane, A. W., McNally, M. T., & Mouland, A. J. (2006). The retrovirus RNA trafficking granule: From birth to maturity. Retrovirology, 3, 18.PubMedCrossRefGoogle Scholar
  25. 25.
    Coffin, J. M., Hughes, S. H., & Varmus, H. E. (1997). Retroviruses. New York: Cold Spring Harbor Laboratory Press.Google Scholar
  26. 26.
    Collier, L. S., Carlson, C. M., Ravimohan, S., Dupuy, A. J., & Largaespada, D. A. (2005). Cancer gene discovery in solid tumours using transposon-based somatic mutagenesis in the mouse. Nature, 436, 272–276.PubMedCrossRefGoogle Scholar
  27. 27.
    Cooper, G. M., & Neiman, P. E. (1981). Two distinct candidate transforming genes of lymphoid leukosis virus-induced neoplasms. Nature, 292, 857–8.CrossRefGoogle Scholar
  28. 28.
    Cooper, M. D., Payne, L. N., Dent, P. B., Burmester, B. R., & Good, R. A. (1968). Pathogenesis of avian lymphoid leukosis. I. Histogenesis. Journal of the National Cancer Institute, 41, 373–378.PubMedGoogle Scholar
  29. 29.
    Copeland, N. G., & Jenkins, N. A. (2009). Deciphering the genetic landscape of cancer - from genes to pathways. Trends in Genetics, 25, 455–462.PubMedCrossRefGoogle Scholar
  30. 30.
    Corcoran, L. M., Adams, J. M., Dunn, A. R., & Cory, S. (1984). Murine T lymphomas in which the cellular myc oncogene has been activated by retroviral insertion. Cell, 37, 113–122.PubMedCrossRefGoogle Scholar
  31. 31.
    Crittenden, L. B., Hayward, W. S., Hanafusa, H., & Fadly, A. M. (1980). Induction of neoplasms by subgroup E recombinants of exogenous and endogenous avian retroviruses (Rous-associated virus type 60). Journal of Virology, 33, 915–919.PubMedGoogle Scholar
  32. 32.
    Croce, C. M., & Nowell, P. C. (1985). Molecular basis of human B cell neoplasia. Blood, 65, 1–7.PubMedGoogle Scholar
  33. 33.
    Cullen, B. R., Lomedico, P. T., & Ju, G. (1984). Transcriptional interference in avian retroviruses–implications for the promoter insertion model of leukaemogenesis. Nature, 307, 241–245.PubMedCrossRefGoogle Scholar
  34. 34.
    Dabrowska, M. J., Dybkaer, K., Johnsen, H. E., Wang, B., Wabl, M., & Pedersen, F. S. (2009). Loss of MicroRNA targets in the 3' untranslated region as a mechanism of retroviral insertional activation of growth factor independence 1. Journal of Virology, 83, 8051–8061.PubMedCrossRefGoogle Scholar
  35. 35.
    de Laat, W., & Grosveld, F. (2003). Spatial organization of gene expression: The active chromatin hub. Chromosome Research, 11, 447–459.PubMedCrossRefGoogle Scholar
  36. 36.
    Donovan, S. L., Schweers, B., Martins, R., Johnson, D., & Dyer, M. A. (2006). Compensation by tumor suppressor genes during retinal development in mice and humans. BMC Biology, 4, 14.PubMedCrossRefGoogle Scholar
  37. 37.
    Dupuy, A. J., Jenkins, N. A., & Copeland, N. G. (2006). Sleeping beauty: A novel cancer gene discovery tool. Human Molecular Genetics, 15(Spec No 1), R75–R79.PubMedCrossRefGoogle Scholar
  38. 38.
    Eis, P. S., Tam, W., Sun, L., Chadburn, A., Li, Z., Gomez, M. F., et al. (2005). Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proceedings of the National Academy of Sciences of the USA, 102, 3627–3632.PubMedCrossRefGoogle Scholar
  39. 39.
    Ejegod, D., Sorensen, K. D., Mossbrugger, I., Quintanilla-Martinez, L., Schmidt, J., & Pedersen, F. S. (2009). Control of pathogenicity and disease specificity of a T-lymphomagenic gammaretrovirus by E-box motifs but not by an overlapping glucocorticoid response element. Journal of Virology, 83, 336–346.PubMedCrossRefGoogle Scholar
  40. 40.
    El Kaderi, B., Medler, S., Raghunayakula, S., & Ansari, A. (2009). Gene looping is conferred by activator-dependent interaction of transcription initiation and termination machineries. Journal of Biological Chemistry, 284, 25015–25025.PubMedCrossRefGoogle Scholar
  41. 41.
    Ellerman, V., & Bang, O. (1908). Experimentelle Leukämie bei Hühnern. Zentralblatt fur Bakteriologi, Parasitenkunde, Infektionskrinkheiten und Hygiene Abteilung Originale, 46, 595–609.Google Scholar
  42. 42.
    Ethelberg, S., Sorensen, A. B., Schmidt, J., Luz, A., & Pedersen, F. S. (1997). An SL3-3 murine leukemia virus enhancer variant more pathogenic than the wild type obtained by assisted molecular evolution in vivo. Journal of Virology, 71, 9796–9799.PubMedGoogle Scholar
  43. 43.
    Feuer, G., & Fan, H. (1990). Substitution of murine transthyretin (prealbumin) regulatory sequences into the Moloney murine leukemia virus long terminal repeat yields infectious virus with altered biological properties. Journal of Virology, 64, 6130–6140.PubMedGoogle Scholar
  44. 44.
    Frese, K. K., & Tuveson, D. A. (2007). Maximizing mouse cancer models. Nature Reviews Cancer, 7, 645–658.PubMedCrossRefGoogle Scholar
  45. 45.
    Fung, Y. K., Fadly, A. M., Crittenden, L. B., & Kung, H. J. (1981). On the mechanism of retrovirus-induced avian lymphoid leukosis: Deletion and integration of the proviruses. Proceedings of the National Academy of Sciences of the USA, 78, 3418–3422.PubMedCrossRefGoogle Scholar
  46. 46.
    Fung, Y. K., Lewis, W. G., Crittenden, L. B., & Kung, H. J. (1983). Activation of the cellular oncogene c-erbB by LTR insertion: Molecular basis for induction of erythroblastosis by avian leukosis virus. Cell, 33, 357–368.PubMedCrossRefGoogle Scholar
  47. 47.
    Gentile, A., Trusolino, L., & Comoglio, P. M. (2008). The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Reviews, 27, 85–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Gong, M., Semus, H. L., Bird, K. J., Stramer, B. J., & Ruddell, A. (1998). Differential selection of cells with proviral c-myc and c-erbB integrations after avian leukosis virus infection. Journal of Virology, 72, 5517–5525.PubMedGoogle Scholar
  49. 49.
    Goodenow, M. M., & Hayward, W. S. (1987). 5' long terminal repeats of myc-associated proviruses appear structurally intact but are functionally impaired in tumors induced by avian leukosis viruses. Journal of Virology, 61, 2489–2498.PubMedGoogle Scholar
  50. 50.
    Goodwin, R. G., Rottman, F. M., Callaghan, T., Kung, H. J., Maroney, P. A., & Nilsen, T. W. (1986). c-erbB activation in avian leukosis virus-induced erythroblastosis: Multiple epidermal growth factor receptor mRNAs are generated by alternative RNA processing. Molecular and Cellular Biology, 6, 3128–3133.PubMedGoogle Scholar
  51. 51.
    Han, J. Y. (2009). Germ cells and transgenesis in chickens. Comparative Immunology, Microbiology and Infectious Diseases, 32, 61–80.PubMedCrossRefGoogle Scholar
  52. 52.
    Hanecak, R., Pattengale, P. K., & Fan, H. (1991). Deletion of a GC-rich region flanking the enhancer element within the long terminal repeat sequences alters the disease specificity of Moloney murine leukemia virus. Journal of Virology, 65, 5357–5363.PubMedGoogle Scholar
  53. 53.
    Hanlon, L., Barr, N. I., Blyth, K., Stewart, M., Haviernik, P., Wolff, L., et al. (2003). Long-range effects of retroviral insertion on c-myb: Overexpression may be obscured by silencing during tumor growth in vitro. Journal of Virology, 77, 1059–1068.PubMedCrossRefGoogle Scholar
  54. 54.
    Hayward, W. S., Neel, B. G., & Astrin, S. M. (1981a). Activation of a cellular onc gene by promoter insertion in ALV-induced lymphoid leukosis. Nature, 290, 475–480.PubMedCrossRefGoogle Scholar
  55. 55.
    Hayward, W. S., Neel, B. G., Fang, J., Robinson, H. L., & Astrin, S. M. (1981b). Avian lymphoid leukosis is correlated with the appearance of discrete new RNAs containing viral and cellular genetic information. Hematology and Blood Transfusion, 26, 439–444.Google Scholar
  56. 56.
    Heine, U., De The, G., Ishiguro, H., Sommer, J. R., Beard, D., & Beard, J. W. (1962). Multiplicity of cell response to the BAI strain A (myeloblastosis) avian tumor virus. II. Nephroblastoma (Wilms’ tumor): Ultrastructure. Journal of the National Cancer Institute, 29, 41–105.PubMedGoogle Scholar
  57. 57.
    Hemann, M. T., Fridman, J. S., Zilfou, J. T., Hernando, E., Paddison, P. J., Cordon-Cardo, C., et al. (2003). An epi-allelic series of p53 hypomorphs created by stable RNAi produces distinct tumor phenotypes in vivo. Nature Genetics, 33, 396–400.PubMedCrossRefGoogle Scholar
  58. 58.
    Herman, S. A., & Coffin, J. M. (1986). Differential transcription from the long terminal repeats of integrated avian leukosis virus DNA. Journal of Virology, 60, 497–505.PubMedGoogle Scholar
  59. 59.
    Herman, S. A., & Coffin, J. M. (1987). Efficient packaging of readthrough RNA in ALV: Implications for oncogene transduction. Science, 236, 845–848.PubMedCrossRefGoogle Scholar
  60. 60.
    Hosoya, N., Qiao, Y., Hangaishi, A., Wang, L., Nannya, Y., Sanada, M., et al. (2005). Identification of a SRC-like tyrosine kinase gene, FRK, fused with ETV6 in a patient with acute myelogenous leukemia carrying a t(6;12)(q21;p13) translocation. Genes Chromosomes and Cancer, 42, 269–279.PubMedCrossRefGoogle Scholar
  61. 61.
    Huppi, K., Siwarski, D., Shaughnessy, J. D., Jr., & Mushinski, J. F. (1993). Co-amplification of c-myc/pvt-1 in immortalized mouse B-lymphocytic cell lines results in a novel pvt-1/AJ-1 transcript. International Journal of Cancer, 53, 493–498.CrossRefGoogle Scholar
  62. 62.
    Ishiguro, H., Beard, D., Sommer, J. R., Heine, U., De The, G., & Beard, J. W. (1962). Multiplicity of cell response to the BAI strain A (myeloblastosis) avian tumor virus. II. Nephroblastoma (Wilms’ tumor): Gross and microscopic pathology. Journal of the National Cancer Institute, 29, 1–17.Google Scholar
  63. 63.
    Jiang, W., Kanter, M. R., Dunkel, I., Ramsay, R. G., Beemon, K. L., & Hayward, W. S. (1997). Minimal truncation of the c-myb gene product in rapid-onset B-cell lymphoma. Journal of Virology, 71, 6526–6533.PubMedGoogle Scholar
  64. 64.
    Johansson, F. K., Brodd, J., Eklof, C., Ferletta, M., Hesselager, G., Tiger, C. F., et al. (2004). Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proceedings of the National Academy of Sciences of the USA, 101, 11334–11337.PubMedCrossRefGoogle Scholar
  65. 65.
    Johnson, C., Lobelle-Rich, P. A., Puetter, A., & Levy, L. S. (2005). Substitution of feline leukemia virus long terminal repeat sequences into murine leukemia virus alters the pattern of insertional activation and identifies new common insertion sites. Journal of Virology, 79, 57–66.PubMedCrossRefGoogle Scholar
  66. 66.
    Johnson, L., Mercer, K., Greenbaum, D., Bronson, R. T., Crowley, D., Tuveson, D. A., et al. (2001). Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature, 410, 1111–1116.PubMedCrossRefGoogle Scholar
  67. 67.
    Joliot, V., Khelifi, C., Wyers, M., Dambrine, G., Lasserre, F., Lemercier, P., et al. (1996). The noncoding and surface envelope coding sequences of myeloblastosis-associated virus are respectively responsible for nephroblastoma development and renal hyperplasia. Journal of Virology, 70, 2576–2580.PubMedGoogle Scholar
  68. 68.
    Joliot, V., Martinerie, C., Dambrine, G., Plassiart, G., Brisac, M., Crochet, J., et al. (1992). Proviral rearrangements and overexpression of a new cellular gene (nov) in myeloblastosis-associated virus type 1-induced nephroblastomas. Molecular and Cellular Biology, 12, 10–21.PubMedGoogle Scholar
  69. 69.
    Jones, F. S., & Rous, P. (1914). On the cause of the localization of secondary tumors at points of injury. J Exp Med, 20, 404–412.PubMedCrossRefGoogle Scholar
  70. 70.
    Kalina, J., Senigl, F., Micakova, A., Mucksova, J., Blazkova, J., Yan, H., et al. (2007). Retrovirus-mediated in vitro gene transfer into chicken male germ line cells. Reproduction, 134, 445–453.PubMedCrossRefGoogle Scholar
  71. 71.
    Kanter, M. R., Smith, R. E., & Hayward, W. S. (1988). Rapid induction of B-cell lymphomas: Insertional activation of c-myb by avian leukosis virus. Journal of Virology, 62, 1423–1432.PubMedGoogle Scholar
  72. 72.
    Kawai, S., & Yamamoto, T. (1970). Isolation of different kinds of non-virus producing chick cells transformed by Schmidt-Ruppin strain (subgroup A) of Rous sarcoma virus. Japanese Journal of Experimental Medicine, 40, 243–256.PubMedGoogle Scholar
  73. 73.
    Keng, V. W., Villanueva, A., Chiang, D. Y., Dupuy, A. J., Ryan, B. J., Matise, I., et al. (2009). A conditional transposon-based insertional mutagenesis screen for genes associated with mouse hepatocellular carcinoma. Nature Biotechnology, 27, 264–274.PubMedCrossRefGoogle Scholar
  74. 74.
    Kluwe, J., Mencin, A., & Schwabe, R. F. (2009). Toll-like receptors, wound healing, and carcinogenesis. Journal of Molecular Medicine, 87, 125–138.PubMedCrossRefGoogle Scholar
  75. 75.
    Kool, J., & Berns, A. (2009). High-throughput insertional mutagenesis screens in mice to identify oncogenic networks. Nature Reviews Cancer, 9, 389–399.PubMedCrossRefGoogle Scholar
  76. 76.
    Koon, H. B., Ippolito, G. C., Banham, A. H., & Tucker, P. W. (2007). FOXP1: A potential therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 11, 955–965.PubMedCrossRefGoogle Scholar
  77. 77.
    Lax, I., Kris, R., Sasson, I., Ullrich, A., Hayman, M. J., Beug, H., et al. (1985). Activation of c-erbB in avian leukosis virus-induced erythroblastosis leads to the expression of a truncated EGF receptor kinase. EMBO Journal, 4, 3179–3182.PubMedGoogle Scholar
  78. 78.
    Lewis, B. C., Klimstra, D. S., Socci, N. D., Xu, S., Koutcher, J. A., & Varmus, H. E. (2005). The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Molecular and Cellular Biology, 25, 1228–1237.PubMedCrossRefGoogle Scholar
  79. 79.
    Li, T., & Zhang, J. (2002). Intramolecular recombinations of Moloney murine leukemia virus occur during minus-strand DNA synthesis. Journal of Virology, 76, 9614–9623.PubMedCrossRefGoogle Scholar
  80. 80.
    Lin, Q., Chen, Q., Lin, L., Smith, S., & Zhou, J. (2007). Promoter targeting sequence mediates enhancer interference in the Drosophila embryo. Proceedings of the National Academy of Sciences of the USA, 104, 3237–3242.PubMedCrossRefGoogle Scholar
  81. 81.
    Linial, M., & Groudine, M. (1985). Transcription of three c-myc exons is enhanced in chicken bursal lymphoma cell lines. Proceedings of the National Academy of Sciences of the USA, 82, 53–57.PubMedCrossRefGoogle Scholar
  82. 82.
    Lu, Y., Yao, H. P., & Wang, M. H. (2007). Multiple variants of the RON receptor tyrosine kinase: Biochemical properties, tumorigenic activities, and potential drug targets. Cancer Letters, 257, 157–164.PubMedCrossRefGoogle Scholar
  83. 83.
    Lund, A. H., Turner, G., Trubetskoy, A., Verhoeven, E., Wientjens, E., Hulsman, D., et al. (2002). Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nature Genetics, 32, 160–165.PubMedCrossRefGoogle Scholar
  84. 84.
    Maciolek, N. L., & McNally, M. T. (2007). Serine/arginine-rich proteins contribute to negative regulator of splicing element-stimulated polyadenylation in rous sarcoma virus. Journal of Virology, 81, 11208–11217.PubMedCrossRefGoogle Scholar
  85. 85.
    Maihle, N. J., Raines, M. A., Flickinger, T. W., & Kung, H. J. (1988). Proviral insertional activation of c-erbB: Differential processing of the protein products arising from two alternate transcripts. Molecular and Cellular Biology, 8, 4868–4876.PubMedGoogle Scholar
  86. 86.
    Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454, 436–444.PubMedCrossRefGoogle Scholar
  87. 87.
    Marks, F., Schwartz, M., & Furstenberg, G. (1995). Promotion and cocarcinogenesis. In J. C. Arcos (ed.), Chemical induction of cancer: Modulation and combination effects. An inventory of the many factors which influence carcinogenesis (pp. 123–184.). Boston: Burkhauser.Google Scholar
  88. 88.
    McGee-Estrada, K., Palmarini, M., Hallwirth, C., & Fan, H. (2005). A Moloney murine leukemia virus driven by the Jaagsiekte sheep retrovirus enhancers shows enhanced specificity for infectivity in lung epithelial cells. Virus Genes, 31, 257–263.PubMedCrossRefGoogle Scholar
  89. 89.
    Meuwissen, R., Linn, S. C., van der Valk, M., Mooi, W. J., & Berns, A. (2001). Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene, 20, 6551–6558.PubMedCrossRefGoogle Scholar
  90. 90.
    Michaloglou, C., Vredeveld, L. C., Mooi, W. J., & Peeper, D. S. (2008). BRAF(E600) in benign and malignant human tumours. Oncogene, 27, 877–895.PubMedCrossRefGoogle Scholar
  91. 91.
    Mikkers, H., Allen, J., Knipscheer, P., Romeijn, L., Hart, A., Vink, E., et al. (2002). High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature Genetics, 32, 153–159.PubMedCrossRefGoogle Scholar
  92. 92.
    Miles, B. D., & Robinson, H. L. (1985). High-frequency transduction of c-erbB in avian leukosis virus-induced erythroblastosis. Journal of Virology, 54, 295–303.PubMedGoogle Scholar
  93. 93.
    Miller, J. T., & Stoltzfus, C. M. (1992). Two distant upstream regions containing cis-acting signals regulating splicing facilitate 3'-end processing of avian sarcoma virus RNA. Journal of Virology, 66, 4242–4251.PubMedGoogle Scholar
  94. 94.
    Mitelman, F., Johansson, B., & Mertens, F. (2007). The impact of translocations and gene fusions on cancer causation. Nature Reviews Cancer, 7, 233–245.PubMedCrossRefGoogle Scholar
  95. 95.
    Muzumdar, M. D., Luo, L., & Zong, H. (2007). Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM. Proceedings of the National Academy of Sciences of the USA, 104, 4495–4500.PubMedCrossRefGoogle Scholar
  96. 96.
    Neel, B. G., Hayward, W. S., Robinson, H. L., Fang, J., & Astrin, S. M. (1981). Avian leukosis virus-induced tumors have common proviral integration sites and synthesize discrete new RNAs: Oncogenesis by promoter insertion. Cell, 23, 323–334.PubMedCrossRefGoogle Scholar
  97. 97.
    Neil, J. C., Fulton, R., Rigby, M., & Stewart, M. (1991). Feline leukaemia virus: Generation of pathogenic and oncogenic variants. Current Topics in Microbiology and Immunology, 171, 67–93.PubMedGoogle Scholar
  98. 98.
    Neiman, P. E., Grbic, J. J., Polony, T. S., Kimmel, R., Bowers, S. J., Delrow, J., et al. (2003). Functional genomic analysis reveals distinct neoplastic phenotypes associated with c-myb mutation in the bursa of fabricius. Oncogene, 22, 1073–1086.PubMedCrossRefGoogle Scholar
  99. 99.
    Nilsen, T. W., Maroney, P. A., Goodwin, R. G., Rottman, F. M., Crittenden, L. B., Raines, M. A., et al. (1985). c-erbB activation in ALV-induced erythroblastosis: Novel RNA processing and promoter insertion result in expression of an amino-truncated EGF receptor. Cell, 41, 719–726.PubMedCrossRefGoogle Scholar
  100. 100.
    Noori-Daloii, M. R., Swift, R. A., Kung, H. J., Crittenden, L. B., & Witter, R. L. (1981). Specific integration of REV proviruses in avian bursal lymphomas. Nature, 294, 574–576.PubMedCrossRefGoogle Scholar
  101. 101.
    Norton, P. A., & Coffin, J. M. (1987). Characterization of Rous sarcoma virus sequences essential for viral gene expression. Journal of Virology, 61, 1171–1179.PubMedGoogle Scholar
  102. 102.
    Nusse, R., Theunissen, H., Wagenaar, E., Rijsewijk, F., Gennissen, A., Otte, A., et al. (1990). The Wnt-1 (int-1) oncogene promoter and its mechanism of activation by insertion of proviral DNA of the mouse mammary tumor virus. Molecular and Cellular Biology, 10, 4170–4179.PubMedGoogle Scholar
  103. 103.
    Olah, I., & Glick, B. (1978). The number and size of the follicular epithelium (FE) and follicles in the bursa of Fabricius. Poultry Science, 57, 1445–1450.PubMedGoogle Scholar
  104. 104.
    Olayioye, M. A., Neve, R. M., Lane, H. A., & Hynes, N. E. (2000). The ErbB signaling network: Receptor heterodimerization in development and cancer. EMBO Journal, 19, 3159–3167.PubMedCrossRefGoogle Scholar
  105. 105.
    O’Sullivan, C. T., Polony, T. S., Paca, R. E., & Beemon, K. L. (2002). Rous sarcoma virus negative regulator of splicing selectively suppresses SRC mRNA splicing and promotes polyadenylation. Virology, 302, 405–412.PubMedCrossRefGoogle Scholar
  106. 106.
    Pajer, P., Karafiat, V., Pecenka, V., Prukova, D., Dudlova, J., Plachy, J., et al. (2009). Industasis, a promotion of tumor formation by nontumorigenic stray cells. Cancer Research, 69, 4605–4612.PubMedCrossRefGoogle Scholar
  107. 107.
    Pajer, P., Pecenka, V., Karafiat, V., Kralova, J., Horejsi, Z., & Dvorak, M. (2003). The twist gene is a common target of retroviral integration and transcriptional deregulation in experimental nephroblastoma. Oncogene, 22, 665–673.PubMedCrossRefGoogle Scholar
  108. 108.
    Pajer, P., Pecenka, V., Kralova, J., Karafiat, V., Prukova, D., Zemanova, Z., et al. (2006). Identification of potential human oncogenes by mapping the common viral integration sites in avian nephroblastoma. Cancer Research, 66, 78–86.PubMedCrossRefGoogle Scholar
  109. 109.
    Parghi, S. S., Brandvold, K. A., Bowers, S. J., Neiman, P. E., & Ruddell, A. (2004). Reduced Myc overexpression and normal B-cell differentiation mediate resistance to avian leukosis virus lymphomagenesis. Oncogene, 23, 4413–4421.PubMedCrossRefGoogle Scholar
  110. 110.
    Payne, L. N. (1992). Developments in avian leukosis research. Leukemia, 6(Suppl 3), 150S–152S.PubMedGoogle Scholar
  111. 111.
    Payne, G. S., Bishop, J. M., & Varmus, H. E. (1982). Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature, 295, 209–214.PubMedCrossRefGoogle Scholar
  112. 112.
    Payne, G. S., Courtneidge, S. A., Crittenden, L. B., Fadly, A. M., Bishop, J. M., & Varmus, H. E. (1981). Analysis of avian leukosis virus DNA and RNA in bursal tumours: Viral gene expression is not required for maintenance of the tumor state. Cell, 23, 311–322.PubMedCrossRefGoogle Scholar
  113. 113.
    Payne, L. N., & Fadly, A. M. (1997). Leukosis/sarcoma group. In: B. W. Calnek, H. J. Barnes, C. W. Beard, L. R. McDougald, & Y. M. Saif, (Ed.), Diseases of Poultry (10th ed., pp. 414–466). Ames, IA: Iowa State University Press.Google Scholar
  114. 114.
    Pecenka, V., Dvorak, M., Karafiat, V., Sloncova, E., Hlozanek, I., Travnicek, M., et al. (1988a). Avian nephroblastomas induced by a retrovirus (MAV-2) lacking oncogene. II. Search for common sites of proviral integration in tumour DNA. Folia Biologica (Praha), 34, 147–169.Google Scholar
  115. 115.
    Pecenka, V., Dvorak, M., Karafiat, V., & Travnicek, M. (1988b). Avian nephroblastomas induced by a retrovirus (MAV-2) lacking oncogene. III. Presence of defective MAV-2 proviruses in tumour DNA. Folia Biologica (Praha), 34, 215–232.Google Scholar
  116. 116.
    Perkins, K. J., Lusic, M., Mitar, I., Giacca, M., & Proudfoot, N. J. (2008). Transcription-dependent gene looping of the HIV-1 provirus is dictated by recognition of pre-mRNA processing signals. Molecular Cell, 29, 56–68.PubMedCrossRefGoogle Scholar
  117. 117.
    Pizer, E. S., Baba, T. W., & Humphries, E. H. (1992). Activation of the c-myb locus is insufficient for the rapid induction of disseminated avian B-cell lymphoma. Journal of Virology, 66, 512–523.PubMedGoogle Scholar
  118. 118.
    Pizer, E., & Humphries, E. H. (1989). RAV-1 insertional mutagenesis: Disruption of the c-myb locus and development of avian B-cell lymphomas. Journal of Virology, 63, 1630–1640.PubMedGoogle Scholar
  119. 119.
    Polony, T. S., Bowers, S. J., Neiman, P. E., & Beemon, K. L. (2003). Silent point mutation in an avian retrovirus RNA processing element promotes c-myb-associated short-latency lymphomas. Journal of Virology, 77, 9378–9387.PubMedCrossRefGoogle Scholar
  120. 120.
    Pulciani, S., Santos, E., Long, L. K., Sorrentino, V., & Barbacid, M. (1985). ras gene Amplification and malignant transformation. Molecular and Cellular Biology, 5, 2836–2841.PubMedGoogle Scholar
  121. 121.
    Purchase, H. G., Okazaki, W., Vogt, P. K., Hanafusa, H., Burmester, B. R., & Crittenden, L. B. (1977). Oncogenicity of avian leukosis viruses of different subgroups and of mutants of sarcoma viruses. Infection and Immunity, 15, 423–428.PubMedGoogle Scholar
  122. 122.
    Quintrell, N., Hughes, S. H., Varmus, H. E., & Bishop, J. M. (1980). Structure of viral DNA and RNA in mammalian cells infected with avian sarcoma virus. Journal of Molecular Biology, 143, 363–393.PubMedCrossRefGoogle Scholar
  123. 123.
    Raines, M. A., Lewis, W. G., Crittenden, L. B., & Kung, H. J. (1985). c-erbB activation in avian leukosis virus-induced erythroblastosis: Clustered integration sites and the arrangement of provirus in the c-erbB alleles. Proceedings of the National Academy of Sciences of the USA, 82, 2287–2291.PubMedCrossRefGoogle Scholar
  124. 124.
    Raines, M. A., Maihle, N. J., Moscovici, C., Crittenden, L., & Kung, H. J. (1988). Mechanism of c-erbB transduction: Newly released transducing viruses retain poly(A) tracts of erbB transcripts and encode C-terminally intact erbB proteins. Journal of Virology, 62, 2437–2443.PubMedGoogle Scholar
  125. 125.
    Rangarajan, A., & Weinberg, R. A. (2003). Opinion: Comparative biology of mouse versus human cells: Modelling human cancer in mice. Nature Reviews Cancer, 3, 952–959.PubMedCrossRefGoogle Scholar
  126. 126.
    Robinson, H. L., & Gagnon, G. C. (1986). Patterns of proviral insertion and deletion in avian leukosis virus-induced lymphomas. Journal of Virology, 57, 28–36.PubMedGoogle Scholar
  127. 127.
    Robinson, H. L., Miles, B. D., Catalano, D. E., Briles, W. E., & Crittenden, L. B. (1985). Susceptibility to erbB-induced erythroblastosis is a dominant trait of 151 chickens. Journal of Virology, 55, 617–622.PubMedGoogle Scholar
  128. 128.
    Roebroek, A. J., Schalken, J. A., Onnekink, C., Bloemers, H. P., & Van de Ven, W. J. (1987). Structure of the feline c-fes/fps proto-oncogene: Genesis of a retroviral oncogene. Journal of Virology, 61, 2009–2016.PubMedGoogle Scholar
  129. 129.
    Ryden, T. A., de Mars, M., & Beemon, K. (1993). Mutation of the C/EBP binding sites in the Rous sarcoma virus long terminal repeat and gag enhancers. Journal of Virology, 67, 2862–2870.PubMedGoogle Scholar
  130. 130.
    Sage, J., Miller, A. L., Perez-Mancera, P. A., Wysocki, J. M., & Jacks, T. (2003). Acute mutation of retinoblastoma gene function is sufficient for cell cycle re-entry. Nature, 424, 223–228.PubMedCrossRefGoogle Scholar
  131. 131.
    Sauvageau, M., Miller, M., Lemieux, S., Lessard, J., Hebert, J., & Sauvageau, G. (2008). Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type specific cancer genes in leukemia. Blood, 111, 790–799.PubMedCrossRefGoogle Scholar
  132. 132.
    Schubach, W. H., & Horvath, G. (1988). Alternate structures and stabilities of c-myc RNA in a bursal lymphoma cell line. Nucleic Acids Research, 16, 11171–11186.PubMedCrossRefGoogle Scholar
  133. 133.
    Selten, G., Cuypers, H. T., & Berns, A. (1985). Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO Journal, 4, 1793–1798.PubMedGoogle Scholar
  134. 134.
    Shaughnessy, J. D., Jr., Owens, J. D., Jr., Wiener, F., Hilbert, D. M., Huppi, K., Potter, M., et al. (1993). Retroviral enhancer insertion 5' of c-myc in two translocation-negative mouse plasmacytomas upregulates c-myc expression to different extents. Oncogene, 8, 3111–3121.PubMedGoogle Scholar
  135. 135.
    Shtivelman, E., Zakut, R., & Canaani, E. (1984). Frequent generation of nonrescuable reorganized Moloney murine sarcoma viral genomes. Proceedings of the National Academy of Sciences of the USA, 81, 294–298.PubMedCrossRefGoogle Scholar
  136. 136.
    Simon, M. C., Neckameyer, W. S., Hayward, W. S., & Smith, R. E. (1987). Genetic determinants of neoplastic diseases induced by a subgroup F avian leukosis virus. Journal of Virology, 61, 1203–1212.PubMedGoogle Scholar
  137. 137.
    Simon, M. C., Smith, R. E., & Hayward, W. S. (1984). Mechanisms of oncogenesis by subgroup F avian leukosis viruses. Journal of Virology, 52, 1–8.PubMedGoogle Scholar
  138. 138.
    Smith, M. R., Smith, R. E., Dunkel, I., Hou, V., Beemon, K. L., & Hayward, W. S. (1997). Genetic determinant of rapid-onset B-cell lymphoma by avian leukosis virus. Journal of Virology, 71, 6534–6540.PubMedGoogle Scholar
  139. 139.
    Sorensen, K. D., Quintanilla-Martinez, L., Kunder, S., Schmidt, J., & Pedersen, F. S. (2004). Mutation of all Runx (AML1/core) sites in the enhancer of T-lymphomagenic SL3-3 murine leukemia virus unmasks a significant potential for myeloid leukemia induction and favors enhancer evolution toward induction of other disease patterns. Journal of Virology, 78, 13216–13231.PubMedCrossRefGoogle Scholar
  140. 140.
    Soret, J., Dambrine, G., & Perbal, B. (1989). Induction of nephroblastoma by myeloblastosis-associated virus type 1: State of proviral DNAs in tumor cells. Journal of Virology, 63, 1803–1807.PubMedGoogle Scholar
  141. 141.
    Starr, T. K., Allaei, R., Silverstein, K. A., Staggs, R. A., Sarver, A. L., Bergemann, T. L., et al. (2009). A transposon-based genetic screen in mice identifies genes altered in colorectal cancer. Science, 323, 1747–1750.PubMedCrossRefGoogle Scholar
  142. 142.
    Stewart, M., Mackay, N., Hanlon, L., Blyth, K., Scobie, L., Cameron, E., et al. (2007). Insertional mutagenesis reveals progression genes and checkpoints in MYC/Runx2 lymphomas. Cancer Research, 67, 5126–5133.PubMedCrossRefGoogle Scholar
  143. 143.
    Stoye, J. P., Moroni, C., & Coffin, J. M. (1991). Virological events leading to spontaneous AKR thymomas. Journal of Virology, 65, 1273–1285.PubMedGoogle Scholar
  144. 144.
    Stratton, M. R., Campbell, P. J., & Futreal, P. A. (2009). The cancer genome. Nature, 458, 719–724.PubMedCrossRefGoogle Scholar
  145. 145.
    Suzuki, T., Shen, H., Akagi, K., Morse, H. C., Malley, J. D., Naiman, D. Q., et al. (2002). New genes involved in cancer identified by retroviral tagging. Nature Genetics, 32, 166–174.PubMedCrossRefGoogle Scholar
  146. 146.
    Swanstrom, R., Parker, R. C., Varmus, H. E., & Bishop, J. M. (1983). Transduction of a cellular oncogene: The genesis of Rous sarcoma virus. Proceedings of the National Academy of Sciences of the USA, 80, 2519–2523.PubMedCrossRefGoogle Scholar
  147. 147.
    Swift, R. A., Boerkoel, C., Ridgway, A., Fujita, D. J., Dodgson, J. B., & Kung, H. J. (1987). B-lymphoma induction by reticuloendotheliosis virus: Characterization of a mutated chicken syncytial virus provirus involved in c-myc activation. Journal of Virology, 61, 2084–2090.PubMedGoogle Scholar
  148. 148.
    Theodorou, V., Kimm, M. A., Boer, M., Wessels, L., Theelen, W., Jonkers, J., et al. (2007). MMTV insertional mutagenesis identifies genes, gene families and pathways involved in mammary cancer. Nature Genetics, 39, 759–769.PubMedCrossRefGoogle Scholar
  149. 149.
    Tsichlis, P. N., & Coffin, J. M. (1980). Recombinants between endogenous and exogenous avian tumor viruses: Role of the C region and other portions of the genome in the control of replication and transformation. Journal of Virology, 33, 238–249.PubMedGoogle Scholar
  150. 150.
    Uren, A. G., Kool, J., Berns, A., & van Lohuizen, M. (2005). Retroviral insertional mutagenesis: Past, present and future. Oncogene, 24, 7656–7672.PubMedCrossRefGoogle Scholar
  151. 151.
    Van Dyck, F., Declercq, J., Braem, C. V., & Van de Ven, W. J. (2007). PLAG1, the prototype of the PLAG gene family: Versatility in tumour development (review). International Journal of Oncology, 30, 765–774.PubMedGoogle Scholar
  152. 152.
    van Lohuizen, M., Breuer, M., & Berns, A. (1989). N-myc is frequently activated by proviral insertion in MuLV-induced T cell lymphomas. EMBO Journal, 8, 133–136.PubMedGoogle Scholar
  153. 153.
    Venugopal, K. (1999). Avian leukosis virus subgroup J: A rapidly evolving group of oncogenic retroviruses. Research in Veterinary Science, 67, 113–119.PubMedCrossRefGoogle Scholar
  154. 154.
    Virchow, R. (1863). Aetiologie der neoplastischen Geschwļste/Pathogenie der neoplastischen Geschwļste. In: R. Virchow, (Ed.), Die krankhaften Geschwļste (pp. 57–101). Berlin: Verlag von August von Hirschwald.Google Scholar
  155. 155.
    Vogt, P. K. (1971). Spontaneous segregation of nontransforming viruses from cloned sarcoma viruses. Virology, 46, 939–946.PubMedCrossRefGoogle Scholar
  156. 156.
    Wagh, P. K., Peace, B. E., & Waltz, S. E. (2008). Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Advance in Cancer Research, 100, 1–33.CrossRefGoogle Scholar
  157. 157.
    Wang, W., Warren, M., & Bradley, A. (2007). Induced mitotic recombination of p53 in vivo. Proceedings of the National Academy of Sciences of the USA, 104, 4501–4505.PubMedCrossRefGoogle Scholar
  158. 158.
    Watts, S. L., & Smith, R. E. (1980). Pathology of chickens infected with avian nephoblastoma virus MAV-2(N. Infection and Immunity, 27, 501–512.PubMedGoogle Scholar
  159. 159.
    West, A. G., & Fraser, P. (2005). Remote control of gene transcription. Human Molecular Genetics, 14(Spec No 1), R101–R111.PubMedCrossRefGoogle Scholar
  160. 160.
    Westaway, D., Papkoff, J., Moscovici, C., & Varmus, H. E. (1986). Identification of a provirally activated c-Ha-ras oncogene in an avian nephroblastoma via a novel procedure: cDNA cloning of a chimaeric viral-host transcript. EMBO Journal, 5, 301–309.PubMedGoogle Scholar
  161. 161.
    Wong, S., & Witte, O. N. (2004). The BCR-ABL story: Bench to bedside and back. Annual Review of Immunology, 22, 247–306.PubMedCrossRefGoogle Scholar
  162. 162.
    Wood, L. D., Parsons, D. W., Jones, S., Lin, J., Sjoblom, T., Leary, R. J., et al. (2007). The genomic landscapes of human breast and colorectal cancers. Science, 318, 1108–1113.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu, X., Luke, B. T., & Burgess, S. M. (2006). Redefining the common insertion site. Virology, 344, 292–295.PubMedCrossRefGoogle Scholar
  164. 164.
    Yamamoto, T., de Crombrugghe, B., & Pastan, I. (1980). Identification of a functional promoter in the long terminal repeat of Rous sarcoma virus. Cell, 22, 787–797.PubMedCrossRefGoogle Scholar
  165. 165.
    Yang, F., Xian, R. R., Li, Y., Polony, T. S., & Beemon, K. L. (2007). Telomerase reverse transcriptase expression elevated by avian leukosis virus integration in B cell lymphomas. Proceedings of the National Academy of Sciences of the USA, 104, 18952–18957.PubMedCrossRefGoogle Scholar
  166. 166.
    Yant, S. R., Wu, X., Huang, Y., Garrison, B., Burgess, S. M., & Kay, M. A. (2005). High-resolution genome-wide mapping of transposon integration in mammals. Molecular and Cellular Biology, 25, 2085–2094.PubMedCrossRefGoogle Scholar
  167. 167.
    Yim, E. K., Peng, G., Dai, H., Hu, R., Li, K., Lu, Y., et al. (2009). Rak functions as a tumor suppressor by regulating PTEN protein stability and function. Cancer Cell, 15, 304–314.PubMedCrossRefGoogle Scholar
  168. 168.
    Zhang, J., & Ma, Y. (2001). Evidence for retroviral intramolecular recombinations. Journal of Virology, 75, 6348–6358.PubMedCrossRefGoogle Scholar
  169. 169.
    Zhang, Y., & Rowley, J. D. (2006). Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst), 5, 1282–1297.CrossRefGoogle Scholar
  170. 170.
    Zhou, J., & Levine, M. (1999). A novel cis-regulatory element, the PTS, mediates an anti-insulator activity in the Drosophila embryo. Cell, 99, 567–575.PubMedCrossRefGoogle Scholar
  171. 171.
    Zhu, Y., Ghosh, P., Charnay, P., Burns, D. K., & Parada, L. F. (2002). Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science, 296, 920–922.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vladimír Pečenka
    • 1
  • Petr Pajer
    • 1
  • Vít Karafiát
    • 1
  • Michal Dvořák
    • 1
  1. 1.Department of Molecular VirologyInstitute of Molecular GeneticsPragueCzech Republic

Personalised recommendations