Skip to main content

Attenuation of Chromium Toxicity by Bioremediation Technology

  • Chapter
  • First Online:
Reviews of Environmental Contamination and Toxicology Volume 210

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 210))

Abstract

Human activities, such as industrial and energy production, mineral excavation, and transportation, result in contamination by polluting substances, many of which are dangerous. Chromium (Cr) is one of the most toxic heavy metals and is discharged into the environment through various human activities. Extensive use of chromium in electroplating, tanning, and textile dyeing and as a biocide in power plant cooling water results in the discharge of chromium-containing effluents. The pace of release of organic pollutants, and Cr in particular, into the environment is growing exponentially and is enhancing concerns that such releases pose potentially serious risks to human health. Heavy metals, such as chromium, are not destroyed by degradation and are therefore accumulating in the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler T (1996) Aerobic and Anaerobic biodegradation of PCBS: A review. Crit Rev Biotech 10: 241–251.

    Google Scholar 

  • Adriano DC (1986) Trace elements in the environment. Chapter 5: Chromium. Springer, New York, NY, pp 105–123.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (1998) Toxicological profile for chromium (update). U.S. Department of Health and Human Services. Public Health Service, Cincinnati, OH.

    Google Scholar 

  • Agency for Toxic Substances and Disease Registry (ATSDR) (2001) Toxicological profile for chromium. U.S. Department of Health and Human Services, Public Health Service, Atlanta, GA.

    Google Scholar 

  • Ajmal M, Nomani AA, Ahmad A (1984) Acute toxicity to electroplating wastes to microorganisms. Adsorption of chromite and chromium (VI) on a mixture of clay and sand. Water Air Soil Pollut 2: 119–127.

    Google Scholar 

  • Alexander J, Ashet J (1995) Uptake of chromate in human red blood cells and isolated rat liver cells: The role of the anion carrier. Analyst 120: 931–933.

    CAS  Google Scholar 

  • Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel and copper by Salix acmophylla Boiss.: Role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70: 462–469.

    CAS  Google Scholar 

  • Arslan P, Beltrame M, Tomasi A (1987) Intracellular chromium reduction. Biochem Biophys Res Commun 206: 829–834.

    Google Scholar 

  • Athalye VV, Ramachandran V, D’Souza DJ (1995) Influence of chelating agents on plant uptake of 51Cr, 210Pb and 210Po. Environ Pollut 89: 47–53.

    CAS  Google Scholar 

  • Atta Aly MA, Shehata NG, Kobbia TM (1999) Effect of Cobalt on tomato plant growth and mineral content. Ann Agril Sc (Cairo) 36: 617–624.

    Google Scholar 

  • Austenfeld FA (1979) The effect of Ni, Co and Cr on net photosynthesis of primary and secondary leaves of Phaseolus vulgaris L. Photosynthetica 13: 434–438.

    CAS  Google Scholar 

  • Baker AJM, Whiting SN (2002) In search of the Holy Grail – a further step in understanding metal hyperaccumulation? New Phytologist 155: 1–4.

    Google Scholar 

  • Banu KS, Ramaswamy K (1997) Dual inoculation of vesicular arbuscular mycorrhiza and Rhizobium in green gram. Legume Res 2(3): 177–180.

    Google Scholar 

  • Bartlett RJ, Kimble JM (1976) Behavior of chromium in soils. II. Hexavalent forms. J Environ Qual 5(4): 383–386.

    CAS  Google Scholar 

  • Bassi M, Donini A (1984) Phyllotoxin visualization of F-actin in normal and chromium-poisoned Euglena cells. Cell Biol Int Rep 8: 867–871.

    CAS  Google Scholar 

  • Bassi M, Grazia M, Ricci A (1990) Effects of chromium(VI) on two fresh water plants, Lemna minor and Pistia startiotes. 2 Botanical and physiological observations. Cytobios 62: 101–109.

    CAS  Google Scholar 

  • Berrow ML, Webber J (1972) Trace elements in sewage sludges. J Sci Food Agric 23: 93–100.

    CAS  Google Scholar 

  • Bianchi V, Levis AG (1977) Recent advances in chromium genotoxicity. Toxicol Environ Chem 15: 1–24.

    Google Scholar 

  • Bishnoi NR, Dua A, Gupta VK, Sawhney SK (1993) Effect of chromium on seed germination seedling growth and yield of peas. Agric Ecos Environ 47(1): 47–57.

    CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: Using plants to clean-up the environment. Wiley, New York, NY, pp 53–70.

    Google Scholar 

  • Bonet A, Poschenrieder CH, Barcelo J (1991) Chromium III- Iron interaction in Fe-deficient and Fe-sufficient bean plants. I. Growth and nutrient content. J Plant Nutr 14(4): 403–414.

    CAS  Google Scholar 

  • Brady D, Letebele B, Duncan JR, Rose PD (1994) Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water SA 20: 213–218.

    CAS  Google Scholar 

  • Brochiero E, Bonaly J, Mestre JC (1984) Toxic action of hexavalent chromium on Euglena gracilis strain Z grown under heterotrophic conditions. Arch Environ Contam Toxicol 13: 603–608.

    CAS  Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1: 359–362.

    Google Scholar 

  • Brown SL, Chaney RL, Angle JS, Baker AJM (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci Soc Am J 59: 125–133.

    CAS  Google Scholar 

  • Cary EE, Allaway WH, Olson OE (1977a) Control of Cr concentrations in food plants. I. Absorption and translocation of Cr by plants. J Agric Food Chem 25(2): 300–304.

    CAS  Google Scholar 

  • Cary EE, Allaway WH, Olson OE (1997b) Control of chromium concentrations in food plants. II. Chemistry of chromium in soils and its availability to plants. J Agric Food Chem 25: 305–309.

    Google Scholar 

  • Cervantes C, Garcia JC, Devars S, Corona FG, Tavera HL, Carlos Torres-guzman J, Sanchez RM (2001) Interactions of chromium with micro-organisms and plants. FEMS Microbiol Rev 25: 335–347.

    CAS  Google Scholar 

  • Chandra P, Sinha S, Rai UN (1997) Bioremediation of Cr from water and soil by vascular aquatic plants. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series #664. American Chemical Society, Washington, DC, pp 274–282.

    Google Scholar 

  • Chaudhury TM, Hayes WJ, Khan AG, Khoo CS (1998) Phytoremediation – focusing on accumulator plants that remediate metalcontaminated soils. Aust J Ecotoxicol 4: 37–51.

    Google Scholar 

  • Cheng, L, Liu S, Dixon K (1998) Analysis of repair and mutagenesis of chromium-induced DNA damage in yeast, mammalian cells, and transgenic mice. Environ Health Perspect 106: 1027–1032.

    CAS  Google Scholar 

  • Choudhury S, Panda SK (2004) Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense under lead (Pb) and Arsenic (As) phytotoxicity. Curr Sci 87(3): 342–348.

    CAS  Google Scholar 

  • Choudhury S, Panda SK (2005) Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr) Broth. chromium and lead phytotoxicity. Water Air Soil Pollut 167(1–4): 73–90.

    CAS  Google Scholar 

  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soil. J Environ Qual 28: 1709–1719.

    CAS  Google Scholar 

  • Corradi MG, Bianchi A (1993) Chromium toxicity in Salvia sclarea – I. Effects of hexavalent chromium on seed germination and seedling development. Environ Exp Bot 33(3): 405–413.

    CAS  Google Scholar 

  • Corradi MG, Gorbi G, Ricci A, Torelli A, Bassi AM (1995) Chromium induced sexual reproduction gives rise to a Cr tolerant progeny in Scenedesmus acutus. Ecotoxicol Environ Saf 32: 12–18.

    CAS  Google Scholar 

  • Costa M (1997) Toxicity and carcinogenicity of Cr(VI) in animal models and humans. Crit Rev Toxicol 27(5): 431–442.

    CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110: 715–719.

    CAS  Google Scholar 

  • Cunningham SD, Shann JR, Crowley DE, Anderson TA (1997) Phytoremediation of contaminated water and soil. In: Kruger EL, Anderson TA, Coats JR (eds) Phytoremediation of soil and water contaminants. ACS Symposium Series #664, American Chemical Society, Washington, DC, pp 2–19.

    Google Scholar 

  • CzakoVer K, Batle M, Raspor P, Sipiczki M, Pesti M (1999) Hexavalent chromium uptake by sensitive and tolerant mutants of Schizosaccharomyces pombe. FEMS Microbiol Lett 173: 109–115.

    Google Scholar 

  • Debatto R, Luciani S (1988) Toxic effect of chromium on cellular metabolism. Sci Total Environ 71: 365–377.

    Google Scholar 

  • Dehn B, Schuepp H (1989) Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agric Ecosyst Environ 29: 79–83.

    Google Scholar 

  • del Val C, Barea JM, Azcon Aguilar C (1999) Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl Soil Ecol 11: 261–269.

    Google Scholar 

  • Dixit V, Pandey V, Shyam R (2002) Chromium ions inactivate electron transport and enhance super oxide generation invitro in Pea (Pisum sativum L.cv. Azad) root mitochondria. Plant Cell Environ 25: 687–693.

    CAS  Google Scholar 

  • Dong J, Wu F, Huang R, Zang G (2007) A Chromium tolerant plant growing in Cr-contaminated land. Int J Phytoremediat 9: 167–179.

    CAS  Google Scholar 

  • Dreyfuss J (1964) Characterization of a sulfate and thiosulfate transporting system in Salmonella typhimurium. J Biol Chem 239: 2292–2297.

    CAS  Google Scholar 

  • Dubey SK, Rai LC (1987) Effect of chromium and tin on survival, growth; carbon fixation, heterocyst differentiation, nitrogenase, nitrate reductase and glutamine synthetase activities of Anabaena doliolum. J Plant Physiol 130: 165–172.

    CAS  Google Scholar 

  • Dushenkov D (2003) Trends in phytoremediation of radionuclides. Plant Soil 249: 167–175.

    CAS  Google Scholar 

  • Dvorak DH, Hedin RS, Edeborn HM, Mc Intire PE (1992) Treatment of metal-contaminated water using bacterial sulfate reduction. Results from pilot-scale reactors. Biotechnol Bioeng 40: 609–616.

    CAS  Google Scholar 

  • Erenoglu B, Patra HK, Khodr H, Romheld V, and von Wiren N (2007) Uptake and apoplastic retention of EDTA and phytosiderophore-chelated chromium (III) in maize. J Plant Nutr Soil Sci 170: 788–795.

    CAS  Google Scholar 

  • Fasulo MP, Bassi M, Donini A (1983) Cytotoxic effects of hexavalent chromium in Euglena gracilis. II. Physiological and ultrastructural studies. Protoplasma 114: 35–43.

    CAS  Google Scholar 

  • Frey BE, Riedl GF, Bass AE, Small LF (1983) Sensitivity of estuarine phytoplankton to hexavalent chromium. Estuar Coast Shelf Sci 17: 181–187.

    CAS  Google Scholar 

  • Galli A, Boccardo P, Del Carratore R, Cundari E, Bronzetti G (1985) Conditions that influence the genetic activity of potassium dichromate and chromium chloride in Saccharomyces cerevisiae. Mutat Res 144: 165–169.

    CAS  Google Scholar 

  • Gardea Torresdey JL, Hernandez A, Tiemann KJ, Bibb J, Rodriguez O (1998) Adsorption of toxic metal ions from solution by inactivated cells of Larrea tridentata (Creosote Bush). J Hazard Sub Res 1: 3–1.

    Google Scholar 

  • Gaur A, Adholeya A (2004) Prospect of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci 86(4): 528–534.

    CAS  Google Scholar 

  • Gaw HZ, Soong PN (1942) Nodulation and dry weight of garden peas as affected by sulphur and sulphates. J Am Soc Agron 34: 100–103.

    CAS  Google Scholar 

  • Gerard E, Echevarria G, Sterckeman T, Morel JLP (2000) Availability of Cd to three plant species varying in accumulation pattern. J Environ Qual 29: 1117–1123.

    CAS  Google Scholar 

  • Ghosh M, Singh SP (2005a) A review on phytoremediation of heavy metals and utilization of its by products. Appl Ecol Environ Res 3(1): 1–18.

    Google Scholar 

  • Ghosh M, Singh SP (2005b) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133: 365–371.

    CAS  Google Scholar 

  • Hara T, Sonoda Y (1979) Comparison of the toxicity of heavy metals to cabbage growth. Plant Soil 51: 127–133.

    CAS  Google Scholar 

  • Hara J, Sonada Y, Iwai I (1976) Growth response of cabbage plants to transition elements under water culture conditions. I. Titanium, vanadium, chromium, manganese and Iron. Soil Sci Plant Nutr 22: 307–315.

    CAS  Google Scholar 

  • Hauschild MZ (1993) Putrescine (1,4-diaminobutane) as an indicator of pollution-induced stress in higher plants: Barely and rape stressed with Cr(III) or Cr(VI). Ecotoxicol Environ Saf 26: 228–247.

    CAS  Google Scholar 

  • Henderson G (1989) A comparison of the effects of chromate, molybdate and cadmium oxide on respiration in the yeast Saccharomyces cerevisiae. Biol Metals 2: 83–88.

    CAS  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. National Network of Environmental Management Studies (NNEMS) Report, pp 1–31.

    Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead contaminated soils-role of synthetic chelates in lead phytoextraction. Environ Sci Tech 31: 800–806.

    CAS  Google Scholar 

  • Huffman EWD, Allaway WH (1973) Chromium in pants: Distribution in tissues, organelles and extracts and availability of bean leaf chromium to animals. J Agric Food Chem 21: 982–986.

    Google Scholar 

  • Hunter JG, Vergnano O (1953) Trace element toxicities in oat plants. In: Marsh RW, Thomas I (Eds) Annals of Applied Biology. University Press, Cambridge, pp 761–776.

    Google Scholar 

  • Jamal A, Ayub N, Usman M, Khan AG (2002) Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soyabean and lentil. Int J Phytoremediat 4: 205–221.

    CAS  Google Scholar 

  • Jena AK, Mohanty M, Patra HK (2004) Phyto-remediation of environmental chromiun – A review. e-Planet 2(2): 100–103.

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1992) Trace elements in soils and plants, 2nd ed. CRC Press, London, pp 227–233.

    Google Scholar 

  • Kadiiska MB, Xiang QH, Mason RP (1994) In-vivo free radical generation by chromium (VI): An electron resonance spin trapping investigation. Chem Res Toxicol 7: 800–805.

    CAS  Google Scholar 

  • Kaldorf M, Kuhn AJ, Schroder WH, Hildebrandt U, Bothe H (1999) Selective element deposits in maize colonized by a heavy metal tolerance conferring arbuscular mycorrhizal fungus. J Plant Physiol 154: 718–728.

    CAS  Google Scholar 

  • Katz SA, Salem H (1994) The biological and environmental chemistry of chromium. VCH Publishers, Inc., New York, NY, ISBN 1-56081-629-5, 214p.

    Google Scholar 

  • Kawanishi S, Inoue S, Sano S (1986) Mechanism of DNA cleavage induced by sodium chromate (VI) in the presence of hydrogen peroxidase. J Biol Chem 261: 5952–5958.

    CAS  Google Scholar 

  • Kessler J, Sharkey AGJ, Friedal RA (1971) Spark source mass spectrometer investigation of coal particles and coal ash. US Bureau of mines. Technical Program Report 42.

    Google Scholar 

  • Kharab P, Singh I (1985) Genotoxic effects of potassium dichromate, sodium arsenite, cobalt chloride and lead nitrate in diploid yeast. Mutat Res 155: 117–120.

    CAS  Google Scholar 

  • Kiling J (1997) Phytoremediation of organics moving rapidly into field trials. Environ Sci Tech 31: 129 A.

    Google Scholar 

  • Kleiman ID, Cogliatti DH (1998) Chromium removal from aqueous solutions by different plant species. Environ Technol 19: 1127–1132.

    CAS  Google Scholar 

  • Kochian L (1996) Mechanism of heavy metal transport across plant cell membranes In: International Phytoremediation Conference, Southborough, MA. May 8–10.

    Google Scholar 

  • Koenig P (1910) Stuien iiberdie stimulienenden and toxischen Wirkungen der varschiednwertigen chromver bindungen out die pflanzen. Landwirtsch Jehrb 39: 775–916.

    Google Scholar 

  • Koening P (1911) The stimulatory effects of chromium compounds in plants. Chemikerzeitung 35: 442–443.

    Google Scholar 

  • Krishnamurthy S, Wilkens MM (1994) Environmental chemistry of Cr. Northeast Geol 16(1): 14–17.

    Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metal toxicity towards photosynthetic apparatus – direct and indirect effect of light and dark reactions. Acta Physiol Plant 17: 177–190.

    CAS  Google Scholar 

  • Kumar P, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: The use of plants to remove heavy metals from soils. Environ Sci Technol 29: 1232–1238.

    CAS  Google Scholar 

  • Laheurte F, Leyval C, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9: 111–116.

    Google Scholar 

  • Lahouti M, Peterson PJ (1979) Chromium accumulation and distribution in crop plants. J Sci Food Agric 30: 136–142.

    CAS  Google Scholar 

  • Leung M (2004) Bioremediation: Techniques for cleaning up a mess. Biotech J 2: 18–22. Retrieved from http://www.biotech.ubc.ca.

    Google Scholar 

  • Levis AG, Buttignol M, Vettorato L (1975) Chromium cytotoxic effects on mammalian cells in vitro. Atti Assoc Genet Ital 20: 9–12.

    Google Scholar 

  • Li XL, George E, Marschner H (1991) Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119: 397–404.

    CAS  Google Scholar 

  • Liu DH, Jaing WS, Li MX (1993) Effect of chromium on root growth and cell division of Allium cepa. Isr J Plant Sci 42: 235–243.

    Google Scholar 

  • Liu KJ, Jiang J, Shi X, Gabrys H, Walczak T, Swartz M (1995) Low-frequency EPR study of chromium (V) formation from chromium (VI) in living plants. Biochem Biophys Res Commun 206: 829–834.

    CAS  Google Scholar 

  • Loveley DR, Widman PK, Woodward JC, Phillips JP (1993) Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59: 3572–3576.

    Google Scholar 

  • Lyon GL, Brooks RR, Peterson PJ, Bulter GW (1970) Some trace elements in plants from serpentine soil. N Z J Sci 13: 133–139.

    CAS  Google Scholar 

  • Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: Potential for in situ heavy metal detoxification. Environ Sci Technol 32(20): 3087–3093.

    CAS  Google Scholar 

  • Marre E (1979) Integration of solute transport in cereals. In: Laidman DL and Jones RG (eds) Recent advances in the biochemistry of cereals. Academic Press, New York, NY, pp 3–25.

    Google Scholar 

  • Marre E, Lado P, Rasin Caldogno F, Colombo R, De Michelis MI (1974) Evidence for the coupling of proton extrusion to K+ ion uptake in pea internode segments treated in fusicoccin or auxin. Plant Sci Lett 3: 365–379.

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd ed. Academic press, Harcourt Brace and Co., New York, NY. ISBN: 0124735428, 9780124735422, 889p.

    Google Scholar 

  • McGrath SP (1982) The uptake and translocation of Tri and hexavalent chromium and effects on the growth of Oat in flowing nutrient solution and in soil. New Phytol 92: 381–390.

    CAS  Google Scholar 

  • McGrath SP (1995) Chromium and Nickel. In: Alloway BJ (ed) Heavy metals in soil. Chapman and Hall, London, pp 139–155.

    Google Scholar 

  • McGrath SP, Smith S (1990) Chromium and Nickel. In: Alloway J (ed) Heavy metals in soils. Wiley, New York, NY, pp 125–150.

    Google Scholar 

  • McGrath SP, Shen ZG, Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188: 153–159.

    CAS  Google Scholar 

  • McNeil KR, Waring S (1992) Vitrification of contaminated soil. In: Rees JF (ed) Contaminated land treatment technologies. Society of Chemical Industry, Elsevier Applied Sciences, London, pp 143–159.

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3: 153–162.

    CAS  Google Scholar 

  • Mertz W (1969) Chromium occurrence and function in biological system. Physio Rev 49: 163–239.

    CAS  Google Scholar 

  • Mishra AC (2002) An attempt on improvement of nitrogen fixation in mung bean (Vigna radiata L. Wilczek) grown in chromite mine area soil. Ph. D. Thesis submitted to Utkal University, Bhubaneswar, Orissa.

    Google Scholar 

  • Mishra S, Singh V, Srivastava S, Srivastava R, Srivastava M, Das S, Satsang G, Prakash S (1995) Studies on uptake of trivalent and hexavalent Cr by maize (Zea mays). Food Chem Toxic 33(5): 393–397.

    CAS  Google Scholar 

  • Misra AK, Pattnaik R, Thatoi HN, Padhi GS (1994) Study on growth and N2 fixation ability of some leguminous plant species for reclamation of mine spoilt areas of Eastern Ghats of Orissa. Final Technical Report submitted to Ministry of Environment and Forests, Govt. of India.

    Google Scholar 

  • Misra AK, Thatoi HN, Dutta B, Pattnaik MM, Padhi GS (2004) Stabilisation and restoration of ecosystem in iron and chromite mine waste areas of Eastern Ghats of Orissa through application of microbial technology. Final Technical Report submitted to Ministry of Environment and Forests, Government of India.

    Google Scholar 

  • Mohanty M, Patra HK (2007) Water hyacinth- A tool for Green remediation. Sabujima 15: 41–43. ISSN: 0972-8562.

    Google Scholar 

  • Mohanty M, Patra HK (2009) Attenuation of chromium toxicity in rice by chelating agents. In: Patra HK (ed) Attenuation of stress impacts on plants. Proc. Natl. Sem UGC-DRS (SAP-II). Utkal University, Orissa, pp 53–61.

    Google Scholar 

  • Mohanty M, Jena AK, Patra HK (2005) Effect of chelated Chromium compounds on chlorophyll content and activities of catalase and peroxidase in wheat seedlings. Indus J Agric Biochem 18(1): 25–29 ISSN: 0970-6399.

    CAS  Google Scholar 

  • Mohanty M, Jena AK, Patra HK (2008) Application of chromium and chelating agents on growth and Cr bioaccumulation in wheat (Triticum aestivum L.) seedlings. J Adv Plant Sci 4(1, 2): 21–26, ISSN: 0971-9350.

    Google Scholar 

  • Mohanty M, Pattanaik MM, Misra AK, Patra HK (2009) Attenuation of Cr(VI) from chromite mine waste water by phytoremediation technology. In: Patra HK (ed) Attenuation of stress impacts on plants. Proc. Natl. Sem. UGC-DRS (SAP-II). Utkal University, Orissa, pp 19–28.

    Google Scholar 

  • Moral R, Pedreno JN, Gomez I, Mataix J (1993) Effects of chromium on the nutrient elements content and morphology of tomato. J Plant Nutr 18: 815–822.

    Google Scholar 

  • Mueller B, Rock S, Gowswami D, Ensley D (1999) Phytoremediation decision tree. Prepared by – Interstate Technology and Regulatory Cooperation Work Group, Lucknow, pp 1–36.

    Google Scholar 

  • Musgrove S (1991) An assessment of the efficiency of remedial treatment of metal polluted soil. In: Proceedings of the International Conference on Land Reclamation, University of Wales. Elsevier Science Publication, Essex.

    Google Scholar 

  • Myttenaere C, Mousny JM (1974) The distribution of chromium (VI) in lowland rice in relation to the chemical form and to the amount of stable chromium in the nutrient solution. Plant Soil 41: 65–72.

    CAS  Google Scholar 

  • Nayak S, Rath, SP, Patra HK (2004) The physiological and cytological effect of Cr(VI) on lentil (Lens culinaris Medic.) during seed germination and seeding growth. Plant Sci Res 1 and 2: 16–23.

    Google Scholar 

  • Nayak S, Patra HK, Rath SP (2008) Biochemical and Cytological basis of toxicity lesions produced by Cr(III) in germinating seeds of Lentil (Lens culinaris Medic.) Asian J Microbiol Biotech Environ Sci 9(4): 1–6.

    Google Scholar 

  • Nayari HF, Szalai T, Kadar I, Castho P (1997) Germination characteristics of pea seeds originating from a field trial treated with different levels of harmful elements. Acta Argon Hung 45: 147–154.

    Google Scholar 

  • Negri MC, Hunchman RR (1996) Plants that remove contaminants from the environment. Lab Med 27: 36–40.

    Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replace of the nondescript term ‘heavy metals’ by abiologically and chemically significant classification of metal ions. Environ Pollut Ser B: 3–26.

    Google Scholar 

  • Nieboer E, Jusys AA (1988) Biologic chemistry of Cr. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, NY, pp 21–80.

    Google Scholar 

  • Nicks L, Chambers MF (1994) Nickel farm. Discover. September, p. 19.

    Google Scholar 

  • Ohtake H, Silver S (1994) Bacterial detoxification of toxic chromate. In: Chaudry GR (ed) Biological degradation and bioremediation of toxic chemicals. Dioscorides Press, Portland, pp 403–415.

    Google Scholar 

  • Olsson PA, Francis R, Read DJ, Soderstron B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction wit other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201: 9–16.

    CAS  Google Scholar 

  • Paknikar KM, Bhide JV (1993) Aerobic reduction and biosorption of chromium by a chromate resistant Aspergillus spp. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals and Materials Society, Warrendale, PA, pp 237–244.

    Google Scholar 

  • Panda SK (2003) Heavy metal phytotoxicity induces oxidative stress in Taxithelium spp. Curr Sci 84(5): 631–633.

    CAS  Google Scholar 

  • Panda SK, Patra HK (1997) Physiology of chromium toxicity in plants-a review. Plant Physiol Biochem 24(1): 10–17.

    Google Scholar 

  • Panda SK, Patra HK (1998) Attenuation of nitrate reductase activity by chromium ions in excised wheat leaves. Indian J Agric Biochem 2(2): 56–57.

    Google Scholar 

  • Panda SK, Patra HK (2000a) Nitrate and ammonium ions effect on the chromium toxicity in developing wheat seedlings. Proc Natl Acad Sci India B 70: 75–80.

    CAS  Google Scholar 

  • Panda SK, Patra HK (2000b) Does Cr(III) produces oxidative damage in excised wheat leaves. J Plant Biol 27(2): 105–110.

    Google Scholar 

  • Panda S, Patra HK (2004) Attenuation of toxic chromium (VI) using chelate based phytoremediation in rice. e-planet 2(1): 72–75.

    Google Scholar 

  • Panda SK, Choudhury S (2005) Chromium stress in plants. Braz J Plant Physiol 17(1): 95–102.

    CAS  Google Scholar 

  • Panda SK, Mohapatra S, Patra HK (2002) Chromium toxicity and water stress stimulation effects in intact senescing leaves of green gram (Vigna radiata L. var. Wilckzeck K851). In: Panda SK (ed) Advances in stress physiology in plants. Scientific publishers, India, pp 129–136.

    Google Scholar 

  • Panda SK, Choudhury I, Khan MH (2003) Heavy metal induce lipid peroxidation and affects antioxidants in wheat leaves. Biol Plant 46: 289–294.

    CAS  Google Scholar 

  • Park D, Yun YS, Jo JH, Park JM (2005) Mechanism of hexavalent chromium removal by dead fungal biomass of Aspergillus niger. Water Res 39: 533–540.

    CAS  Google Scholar 

  • Parr PD (1982) Effect of Orocol TL (A corrosion inhibitor) on germination and growth of bush beans. Publication No. 1761, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

    Google Scholar 

  • Parr PD, Taylor FG (1980) Incorporation of Cr in vegetation through root uptake and foliar absorption pathways. Environ Exp Bot 20: 157–160.

    CAS  Google Scholar 

  • Parr PD, Taylor Jr FG (1982) Germination and growth effects of hexavalent chromium in Orocol TL (a corrosion inhibitor) on Phaseolus vulgaris. Environ Int 7: 197–202.

    CAS  Google Scholar 

  • Patnaik R (1995) Impact of dual inoculation of Rhizobium and VAM fungi on growth and nitrogen fixation of selected crop legume grown in mine area soil. Ph.D. Thesis submitted to Utkal University, Bhubaneswar, Orissa.

    Google Scholar 

  • Patra HK, Sayed S, Sahoo BN (2002) Toxicological aspects of Cr(VI) induced catalase, peroxidase and nitrate reductase activities in wheat seedlings under different nitrogen nutritional environment. Pollut Res 21(3): 277–283.

    CAS  Google Scholar 

  • Patra HK, Jena AK, Lenka S, Mohanty M (2005) Effect of ionic and chelated chromium complexes on mung bean seedlings during early phases of plant growth. Plant Sci Res 27(1 and 2): 66–70. ISSN: 0972-8564.

    Google Scholar 

  • Pawlisz AV (1997) Canadian water quality guidelines for Cr. Environ Toxicol Water Qual 12(2): 123–161.

    CAS  Google Scholar 

  • Peterson PJ (1975) Element accumulation by plants and their tolerance of toxic mineral soils. In: Hutchinson TC (ed) Proceedings of the International Conference on Heavy Metals in the Environment, vol. 2. University of Toronto, Toronto, pp. 39–54.

    Google Scholar 

  • Pillichshammer M, Pumpel T, Poder R, Eller K, Klima A, Schinner F (1995) Biosorption of chromium to fungi. Biometal 8(2): 117–121.

    CAS  Google Scholar 

  • Poschenrieder CH, Vazquer MD, Bonet A, Barcelo J (1991) Chromium III – Iron interaction in iron sufficient and iron deficient bean plants. II. Ultrastructural aspects. J Plant Nutr 14(4): 415–428.

    CAS  Google Scholar 

  • Pratt PF (1966) Chromium. In: Chapman HD (ed) Diagnostic criteria for plants and soils, Chapter 9. University of California, Riverside, pp 136–141.

    Google Scholar 

  • Quagraine EK, Peterson HG, Headley JV (2005) In situ bioremediation of naphthenic acids contaminated tailing pond waters in the Athabasca oil sands region—demonstrated field studies and plausible options: A review. J Environ Sci Heal 40: 685–722.

    CAS  Google Scholar 

  • Rajakaruna N, Tompkins KM, Pavicevic PG (2006) Phytoremediation: an affordable green technology for the clean-up of metal-contaminated sites in Sri Lanka. Cey J Sci (Bio Sci) 35(1): 25–39.

    Google Scholar 

  • Ramanathan S, Ensor M, Daunert S (1997) Bacterial biosensors for monitoring toxic metals. Trends Biotechnol 15: 501–506.

    Google Scholar 

  • Ramirez R, Calvo Mendez C, Avila-Rodriguez M, Gutierrez-Corona JF (2000) Chromate resistance and reduction in a yeast strain isolated from industrial waste discharges. In: Raynal JA, Nucklos JR, Reyes P, Ward M (eds) Environmental engineering and health sciences, Section 4: Environmental engineering application. Water Resources Publications, LCC, Englewood, CO, pp 437–445.

    Google Scholar 

  • Rapoport AI, Muter OA (1995) Biosorption of hexavalent chromium by yeast. Process Biochem 30: 145–149.

    CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York, NY, pp 53–70.

    Google Scholar 

  • Reed D, Tasker IR, Cunnane JC, Vandegrift GF (1992) Environmental restoration and separation science. In: Vandgrift GF, Reed DT, Tasker IR (eds) Environmental remediation removing organic and metal ion pollutants. ACS Symposium Series 509, American Chemical Society, Washington, DC, pp 1–21.

    Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249: 57–65.

    CAS  Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: Using plants to clean up the environment. Wiley, New York, NY, pp 193–229.

    Google Scholar 

  • Rilling MC, Steinberg PD (2002) Glomalin production by an arbuscular mycorrhizal fungus: A mechanism of habitat modification. Soil Biol Biochem 34: 1371–1374.

    Google Scholar 

  • Ross DS, Sjogren RE, Bartlett RJ (1981) Behavior of chromium in soils IV. Toxicity to microorganisims. J Environ Qual 10: 145–148.

    CAS  Google Scholar 

  • Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: Perspectives and failures. Water Sci Technol 37: 27–35.

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49: 643–668.

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13: 468–474.

    CAS  Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian Mustard. Environ Sci Technol 31(6): 1636–1644.

    CAS  Google Scholar 

  • Sampanpanish, P, Pongsapich W, Khaodhiar S, Khan E (2006) Chromium removal from soil by phytoremediation with weed plant species in Thailand. Water Air Soil Pollut Focus 6: 191–206.

    CAS  Google Scholar 

  • Sampedro MA, Blanco A, Liama MJ, Serra JL (1995) Sorption of heavy metals to Phormidium laminosum biomass. Biotechnol Appl Biochem 22: 355–366.

    CAS  Google Scholar 

  • Saner G (1980) Chromium in nutrition and disease. Curr Top Nutr Dis 2. Alan R. Liss, New York, ISBN: 08-451-16010,135p.

    Google Scholar 

  • Sarkar A, Jana S (1987) Effect of combinations of heavy metals on hill activity of Azolla pinnata. Water Air Soil Pollut 35(1/2): 141–145.

    CAS  Google Scholar 

  • Schmidt W (1996) Influence of Cr(III) on root associated Fe(III)-reductase in Plantago lanceolata L. J Exp Bot 47: 805–810.

    CAS  Google Scholar 

  • Shanker, AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005a) Chromium toxicity in plants. Environ Int 31: 739–753.

    CAS  Google Scholar 

  • Shanker AK, Ravichandran V, Pathmanabhan G (2005b) Phytoaccumulation of chromium by some multipurpose-tree seedlings. Agroforestry Syst 64: 83–87.

    Google Scholar 

  • Shewry PR, Peterson PJ (1974) The uptake and transport of chromium by barley seedlings (Hordeum vulgare L.). J Exp Bot 25: 785–797.

    CAS  Google Scholar 

  • Shi X, Dalal NS (1989) Chromium (V) and hydroxyl radical formation during the glutathione reductase – catalyzed reduction of chromium (VI). Biochem Biophys Res 163: 627–634.

    CAS  Google Scholar 

  • Silver S, Williams JW (1984) Bacterial resistance and purification of heavy metals. Enzyme Microb Technol 6: 531–537.

    Google Scholar 

  • Skeffington RA, Shewry PR, Peterson PJ (1976) Chromium uptake and transport in barley seedlings (Hordeum vulgare L.). Planta 132: 209–214.

    CAS  Google Scholar 

  • Smith B (1993) Remediation update funding the remedy. Waste Manage Environ 4: 24–30.

    Google Scholar 

  • Solomonson IP, Barber MJ (1990) Assimilatory nitrate reductase: Functional properties and regulation. Annu Rev Plant Physiol Plant mol Biol 41: 225–253.

    CAS  Google Scholar 

  • Srivastava S, Prakash S, Srivastava MM (1999) Chromium mobilization and plant availability – the impact of organic complexing ligands. Plant Soil 212: 203–208.

    CAS  Google Scholar 

  • Stern RM (1982) Chromium compounds: Production and occupational exposure. In: Langard S (ed) Biological and environmental aspects of chromium. Elsevier Biomedical Press, Amsterdam, New York, NY, pp 16–47.

    Google Scholar 

  • Strile M, Kolar J, Selih VS, Kocar D, Pihlar B (2003) A comparative study of several transition metals in fenton like reaction system at circum-neutral pH. Acta Chin Slov 50: 619–632.

    Google Scholar 

  • Thatoi HN (1994) Study on growth and N2 fixation in selected tree legumes under Rhizobium and VAM fungi inoculation in Iron and chromite mine waste soil. Ph.D. Thesis submitted to Utkal University, Bhubaneswar, Orissa.

    Google Scholar 

  • Torresdey JLG, Videa JRP, Montes M, Rosa G, Diaz CB (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis: Impact on plant growth and uptake of nutritional elements. Bioresour Technol 92: 229–235.

    Google Scholar 

  • Torresdey JLG, Rosa G, Videa J.P, Montes M, Jimenez GC, Aguilera IC (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48: 225–232.

    Google Scholar 

  • Travieso L, Canizarez RO, Borja R, Benitez F, Dominguez AR, Dupeyron R, Valiente V (1999) Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62: 144–151.

    CAS  Google Scholar 

  • Tripathi RD, Chandra P (1991) Chromium uptake by Spirodela polyrhiza (L.) Schleiden. In: Relation to metal chelators and pH. NBRI Research Publication 367 (N.S.), pp 764–769.

    Google Scholar 

  • Turnau K, Kottke I, Oberwinkler F (1993) Element localization in mycorrhizal roots of Pteridium aquilinum L. Kuhn collected from experimental plots treated with cadmium dist. New Phytol 123: 313–324.

    CAS  Google Scholar 

  • U.S. Department of Health and Human Services (USDHHS) (1993) Registry of toxic effects of chemical substances (RTECS, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1983) Health assessment for chromium. EPA-600/8-83-014F. Final report. Washington DC.

    Google Scholar 

  • USEPA (1998) Toxicological review of hexavalent chromium. Support of summary information on the integrated risk information system. Washington DC, USA.

    Google Scholar 

  • U.S. Environmental Protection Agency (USEPA) (1999) Integrated risk information system (IRIS) on Chromium III. National Center for Environmental Assessment, Office of Research and Development. Washington, DC.

    Google Scholar 

  • U.S. Environmental Protection Agency Reports (USPAR) (2000) Introduction to phytoremediation. EPA 600/R-99/107. National Risk Management Research Laboratory, Cincinnati, OH; http://www.epa.gov/swertio1/download/remed/introphyto.pdf.

    Google Scholar 

  • Vajpayee P, Sharma SC, Tripathi RD, Rai UN, Yunus M (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39: 2159–2169.

    CAS  Google Scholar 

  • Vajpayee P, Tripathi RD, Rai UN, Ali MB, Singh SN (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41: 1075–82.

    CAS  Google Scholar 

  • Vajpayee P, Rai UN, Ali MB, Tripati RD, Yadav V, Sinha S, Singh SN (2001) Chromium induced physiologic changes in Valisneria spiralis L. and its role in phytoremediation of tannery effluents. Bull Environ Cont Toxicol 67: 246–256.

    CAS  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13: 195–206.

    Google Scholar 

  • Vazquez D, Poschenrieder CH, Barcelo J (1987) Chromium VI induced structural and ultra structural changes in bush bean plants (Phaseolus vulgaris L.). Ann Bot 59: 427–438.

    CAS  Google Scholar 

  • Vivas A, Marulanda A, Gomez M, Barea JM, Azcon R (2003) Physiological characteristics (SDH and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thuringiensis inoculation under two phosphorus levels. Soil Biol Biochem 35: 987–996.

    CAS  Google Scholar 

  • Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11: 235–250.

    CAS  Google Scholar 

  • Vymazal J (1990) Uptake of lead, chromium, cadmium and cobalt by Cladophora glomerata. Bull Environ Contam Toxicol 44: 468–472.

    CAS  Google Scholar 

  • Wakatasuki T (1995) Metal oxido-reduction by microbial cells. J Ind Microbiol 14: 169–177.

    Google Scholar 

  • Wales DS, Sagar BF (1990) Recovery of metal ions by microfungal filters. J Chem Technol Biotechnol 49: 345–355.

    CAS  Google Scholar 

  • Wallace A, Soufi SM, Cha JW, Romney EM (1976) Some effects of chromium toxicity on bush bean plants grown in soil. Plant Soil 44: 471–473.

    CAS  Google Scholar 

  • Watanabe H (1984) Accumulation of chromium from fertilizer in cultivated soils. Soil Sci Plant Nutr 4: 543–554.

    Google Scholar 

  • Wiegand HJ, Ottenwalder H, Bolt HM (1985) Determination of chromium in human red blood cells. Basis for a concept of biological monitoring. Arbeitsmed Sozialmed Praeventivmed 20: 1–4 (in German).

    Google Scholar 

  • Williamson A, Johnson MS (1981) Reclamation of metalliferous mine wastes. In: Lepp NW (ed) Effect of heavy metal pollution on plants, vol. 2. Applied Science Publishers, Barking, Essex, pp 185–212.

    Google Scholar 

  • Wong PT, Trevors JT (1988) Chromium toxicity to algae and bacteria. In: Nriagu JO, Nieboer E (eds) Chromium in the natural and human environments. Wiley, New York, NY, pp 305–315.

    Google Scholar 

  • Wood JM, Wang HK (1983) Microbial resistance to heavy metals. Environ Sci Technol 17: 582–590.

    Google Scholar 

  • World Health Organization (1988) Chromium. Environ Health Criteria 61: 197.

    Google Scholar 

  • Yang X, Baligar VC, Martens DC, Cleark RB (1996) Plant tolerance to nickel toxicity. I. Influx, transport and accumulation of nickel in four species. J Plant Nutr 19: 73–85.

    CAS  Google Scholar 

  • Zaccheo P, Genevini PL, Cocucci S (1982) Chromium ions toxicity on the membrane transport mechanism in segments of maize seedling roots. J Plant Nutr 5: 1217–27.

    CAS  Google Scholar 

  • Zayed AM, Terry N (2003) Chromium in the Environment: Factor affecting biological remediation. Plant and Soil 249: 139–156.

    CAS  Google Scholar 

  • Zayed A, Lytle CM, Qian JH Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 206: 293–299.

    CAS  Google Scholar 

  • Zeid IM (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatment. Biol Plant 44: 111–115.

    CAS  Google Scholar 

  • Zhu YL, Zayed AM, QuH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wet land plants. II. Water Hyacinth. J Environ Qual 28: 339–344.

    CAS  Google Scholar 

  • Zhuang P, Yang QW, Wang HB, Shu WS (2007) Phytoextraction of heavy metals by eight plant species in the field. Water Air Soil Pollut 84: 235–242.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to University Grants Commission, New Delhi, for financial support under the schemes of UGC-DRS -SAP-II and RFSMS-UGC-DRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mohanty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mohanty, M., Patra, H.K. (2011). Attenuation of Chromium Toxicity by Bioremediation Technology. In: Whitacre, D. (eds) Reviews of Environmental Contamination and Toxicology Volume 210. Reviews of Environmental Contamination and Toxicology, vol 210. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7615-4_1

Download citation

Publish with us

Policies and ethics