Advertisement

Semandix: Constructing a Knowledge Base According to a Text Comprehension Model

  • Panagiotis BlitsasEmail author
  • Maria Grigoriadou
  • Christos Mitsis
Chapter

Abstract

The current chapter presents a computational semantic tool called Semandix, which is based on a cognitive text comprehension model. The basic aim of this tool is to construct a semantic knowledge base of concepts and relations among them, in order to analyze free text responses, assess concept maps and provide a semantic dictionary of concepts categorized according to the structures of that cognitive model. Thus, its basic modules are: the ‘Semantic Dictionary’, the ‘Text Analyzer’, the ‘Concept Map Assessor’, and the ‘Administrator’. The enrichment of Semandix knowledge base is being realized through XML format files, extracted from concept mapping tools, as CmapTools, and ‘machine-readable’ dictionaries, as WordNet through the Visdic Editor. So far, Semandix implements some of the basic modules of a proposed free-text response assessment system. Future plans are the Semandix extension, in order to implement the other modules of the proposed system, and the formalization of the semantic content constructed to enrich its knowledge base.

Keywords

Concept mapping Knowledge base Text comprehension model WordNets 

References

  1. Baudet, S., & Denhière, G. (1992). Lecture, comprehension de texte et science cognitive. de France, Paris: Presses Universiteraires.Google Scholar
  2. Blitsas, P., & Grigoriadou, M. (2008). Towards a knowledge-based free-text response assessment system. Proceedings of the IADIS international conference in cognition and exploratory learning in digital age (CELDA 2008), pp. 37–44, Freiburg, Germany, October 13–15, 2008.Google Scholar
  3. Blitsas, P., Papadopoulos, G., & Grigoriadou, M. (2009). How concept mapping can support technical systems understanding based on Denhière-Baudet text comprehension model. Proceedings of the 9th IEEE international conference on advanced learning technologies (ICALT 2009), pp. 352–354, Riga, 14–18 July 2009.Google Scholar
  4. Brookshear, G. (2006). Computer science: An overview. Pearson Addison Wesley, 9th Edit, ISBN 0321387015, Harlow United Kingdom.Google Scholar
  5. Burgess, C., & Lund, K. (1997). Modeling parsing constraints with high-dimensional context space. Language and Cognitive Processes, 12, pp. 177–210.CrossRefGoogle Scholar
  6. Graesser, A., & Tipping, P. (1999). Chapter 24: Understanding texts. In: W. Bechtel & G. Graham (Eds.), A Companion to cognitive science. Malden, MA: Blackwell.Google Scholar
  7. Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing. International Journal of Human Computer Studies, 43, pp. 907–928.Google Scholar
  8. Horák, A., & Smrž, P. (2004). VisDic–Wordnet browsing and editing tool. Proceedings of the 2nd international wordnet conference – GWC 2004, pp. 136–141, Brno, Czech Republic: Masaryk University, ISBN 80-210-3302-9.Google Scholar
  9. Hull, D. A. (1996). Stemming algorithms: A case study for detailed evaluation. Journal of the American Society for Information Science, pp. 70–84.Google Scholar
  10. Kanejiya, D., Kumar, A., & Prasad, S. (2003). Automatic evaluation of students’ answers using syntactically enhanced LSA. Proceedings of the HLT-NAACL workshop on building educational applications using natural language processing (pp. 53–60). Edmonton, Canada.Google Scholar
  11. Kintsch, W. (2001). Predication. Cognitive Science, 25, pp. 173–202.CrossRefGoogle Scholar
  12. Kintsch, W. (1992). A cognitive architecture for comprehension. In H. L. Pick, P. van den Broek, & D. C. Knill (Eds.), The study of cognition: Conceptual and methodological issues (pp. 143–164). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  13. Kremizis, A., Konstantinidi, I., Papadaki, M., Keramidas, G., & Grigoriadou, M. (2007). Greek WordNet extension in the domain of psychology and computer science. Proceedings of the 8th Hellenic European research computer mathematics and its applications conference (HERCMA 2007), Economical University, Athens. Retrieved February 2008, from http://www.aueb.gr/ pympe/hercma/proceedings2007/.
  14. Landauer, T. K. (2002). On the computational basis of learning and cognition: Arguments from LSA. In B. H. Ross (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 41, pp. 43–84). San Diego, CA: Academic.Google Scholar
  15. Landauer, T., & Dumais, S. (1997). A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2), pp. 211–240.CrossRefGoogle Scholar
  16. Lemaire, B., Denhière, G., Bellissens, C., & Jhean-Larose, S. (2006). A computational model for simulating text comprehension. Behavior Research Methods, 38(4), pp. 628–637, Psychonomic Society Publication.CrossRefGoogle Scholar
  17. Lovins. J. B. (1968). Development of a stemming algorithm. Mechanical Translation and Computational Linguistics, 11, pp. 22–31.Google Scholar
  18. Namjoshi, K., & Kurshan, R. (1999). Efficient analysis of cyclic definitions. Proceedings of the 11th international conference on computer aided verification, pp. 394–405 ISBN 3-540-66202-2.Google Scholar
  19. Novak, J., & Gowin, B. (1984). Learning how to learn. New York: Cambridge University Press.Google Scholar
  20. Novak, J., & Musonda, D. (1991). A twelve-year longitudinal study of science concept learning. American Educational Research Journal, 28(1), pp. 117–153.Google Scholar
  21. Papakostas, E., & Stavropoulos, S. (2009). Ispell. Distribution under usage licences GPL/MPL/LGPL. Retrieved November 2009, from http://elspell.math.upatras.gr/ (in greek).
  22. Perfetti, C. A. (1998). The limits of co-occurrence: Tools and theories in language research. Discourse Processes, 25, pp. 363–377.CrossRefGoogle Scholar
  23. Rinaldi, F., Dowdall, J., Hess M., Molla, D., Schwitter, R. (2002). Towards response extraction: An application to technical domains. In F. van Harmelen (Eds.), Proceeding of the 15th European conference on artificial intelligence, pp. 460–464, Amsterdam: IOS Press.Google Scholar
  24. Steinberger, J., & Ježek, K. (2004). Using latent semantic analysis in text summarization and summary evaluation. In Proceedings of ISIM 2004, Roznov pod Radhostem, Czech Republic, April 2004, pp. 93–100.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Panagiotis Blitsas
    • 1
    Email author
  • Maria Grigoriadou
    • 1
  • Christos Mitsis
    • 2
  1. 1.I.P.G.S. in Basic & Applied Cognitive ScienceNational & Kapodistrian University of Athens, PanepistimiopolisAthensGreece
  2. 2.University of PiraeusPiraeusGreece

Personalised recommendations