Circuit Design with Quantum Cellular Automata

Chapter

Abstract

The quantum cellular automata (QCA) concept uses a rectangular cell with a bistable charge configuration to represent information. We first study QCA and its fundamental building blocks in detail. We then proceed to understand logic design using QCA gates. Next, we explore testing of QCA gates. We briefly discuss current computer-aided design (CAD) tools available for QCA design. Finally, we discuss the current state of QCA fabrication technology and briefly comment on future research directions.

Keywords

Quantum cellular automata Design with QCA Majority/minority synthesis Testing of QCA 

References

  1. 1.
    A. O. Orlov, R. Kummamuru, J. Timler, C. S. Lent, and G. L. Snider, Mesoscopic Tunneling Devices. Research Signpost, ch. Experimental studies of quantum-dot cellular automata devices, 2004.Google Scholar
  2. 2.
    G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernsetin, C. S. Lent, J. L. Merz, and W. Porod, “Experimental demonstration of quantum-dot cellular automata,” Semicond. Sci. Technol., vol. 13, no. 8A, pp. A130–A134, Aug. 1998.CrossRefGoogle Scholar
  3. 3.
    M. B. Haider, J. L. Pitters, G. A. DLabio, L. Livadaru, J. Mutus, and R. A. Wolkow, “Controlled coupling and occupation of silicon atomic quantum dots at room temperature,” Phys. Rev. Lett., vol. 102, no. 4, pp. 0468051–4, Jan. 2009.CrossRefGoogle Scholar
  4. 4.
    M. Liu and C. S. Lent, “Reliability and defect tolerance in metallic quantum-dot cellular automata,” J. Electron. Test. Theory & Appl., vol. 23, no. 2–3, pp. 211–218, June 2007.CrossRefGoogle Scholar
  5. 5.
    P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1818–1825, Feb. 1994.CrossRefGoogle Scholar
  6. 6.
    K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 1, pp. 26–31, Mar. 2004.CrossRefGoogle Scholar
  7. 7.
    R. Zhang, P. Gupta, and N. K. Jha, “Majority and minority networks synthesis with application to QCA, SET, and TPL based nanotechnologies,” IEEE Trans. Computer-Aided Des., vol. 26, no. 7, pp. 1233–1245, July 2007.CrossRefGoogle Scholar
  8. 8.
    P. Gupta, N. K. Jha, and L. Lingappan, “A test generation framework for quantum cellular automata (QCA) circuits,” IEEE Trans. VLSI Syst., vol. 15, no. 1, pp. 24–36, Jan. 2007.CrossRefGoogle Scholar
  9. 9.
    R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of majority logic reduction for quantum cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 4, pp. 443–450, Dec. 2004.CrossRefGoogle Scholar
  10. 10.
    M. B. Tahoori, J. Huang, M. Momenzadeh, and F. Lombardi, “Testing of quantum cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 4, pp. 432–442, Dec. 2004.CrossRefGoogle Scholar
  11. 11.
    D. A. Antonelli, D. Z. Chen, T. J. Dysart, X. S. Hu, A. B. Kahng, P. M. Kogge, R. C. Murphy, and M. T. Niemier, “Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions,” in Proc. Design Automation Conf., 2004, pp. 363–368.Google Scholar
  12. 12.
    J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi, “Tile-based QCA design using majority-like logic primitives,” J. Emerg. Technol. Comput. Syst., vol. 1, no. 3, pp. 163–185, Oct. 2005.CrossRefGoogle Scholar
  13. 13.
    D. Berzon and T. J. Fountain, “A memory design in QCAs using the SQUARES formalism,” in Proc. Great Lakes Symp. on VLSI, June 1999, pp. 166–169.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Core CAD TechnologiesIntel CorporationFolsomUSA

Personalised recommendations