Skip to main content

Circuit Design with Quantum Cellular Automata

  • Chapter
  • First Online:
Nanoelectronic Circuit Design
  • 2309 Accesses

Abstract

The quantum cellular automata (QCA) concept uses a rectangular cell with a bistable charge configuration to represent information. We first study QCA and its fundamental building blocks in detail. We then proceed to understand logic design using QCA gates. Next, we explore testing of QCA gates. We briefly discuss current computer-aided design (CAD) tools available for QCA design. Finally, we discuss the current state of QCA fabrication technology and briefly comment on future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. O. Orlov, R. Kummamuru, J. Timler, C. S. Lent, and G. L. Snider, Mesoscopic Tunneling Devices. Research Signpost, ch. Experimental studies of quantum-dot cellular automata devices, 2004.

    Google Scholar 

  2. G. L. Snider, A. O. Orlov, I. Amlani, G. H. Bernsetin, C. S. Lent, J. L. Merz, and W. Porod, “Experimental demonstration of quantum-dot cellular automata,” Semicond. Sci. Technol., vol. 13, no. 8A, pp. A130–A134, Aug. 1998.

    Article  Google Scholar 

  3. M. B. Haider, J. L. Pitters, G. A. DLabio, L. Livadaru, J. Mutus, and R. A. Wolkow, “Controlled coupling and occupation of silicon atomic quantum dots at room temperature,” Phys. Rev. Lett., vol. 102, no. 4, pp. 0468051–4, Jan. 2009.

    Article  Google Scholar 

  4. M. Liu and C. S. Lent, “Reliability and defect tolerance in metallic quantum-dot cellular automata,” J. Electron. Test. Theory & Appl., vol. 23, no. 2–3, pp. 211–218, June 2007.

    Article  Google Scholar 

  5. P. D. Tougaw and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys., vol. 75, no. 3, pp. 1818–1825, Feb. 1994.

    Article  Google Scholar 

  6. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 1, pp. 26–31, Mar. 2004.

    Article  Google Scholar 

  7. R. Zhang, P. Gupta, and N. K. Jha, “Majority and minority networks synthesis with application to QCA, SET, and TPL based nanotechnologies,” IEEE Trans. Computer-Aided Des., vol. 26, no. 7, pp. 1233–1245, July 2007.

    Article  Google Scholar 

  8. P. Gupta, N. K. Jha, and L. Lingappan, “A test generation framework for quantum cellular automata (QCA) circuits,” IEEE Trans. VLSI Syst., vol. 15, no. 1, pp. 24–36, Jan. 2007.

    Article  Google Scholar 

  9. R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of majority logic reduction for quantum cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 4, pp. 443–450, Dec. 2004.

    Article  Google Scholar 

  10. M. B. Tahoori, J. Huang, M. Momenzadeh, and F. Lombardi, “Testing of quantum cellular automata,” IEEE Trans. Nanotech., vol. 3, no. 4, pp. 432–442, Dec. 2004.

    Article  Google Scholar 

  11. D. A. Antonelli, D. Z. Chen, T. J. Dysart, X. S. Hu, A. B. Kahng, P. M. Kogge, R. C. Murphy, and M. T. Niemier, “Quantum-dot cellular automata (QCA) circuit partitioning: problem modeling and solutions,” in Proc. Design Automation Conf., 2004, pp. 363–368.

    Google Scholar 

  12. J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi, “Tile-based QCA design using majority-like logic primitives,” J. Emerg. Technol. Comput. Syst., vol. 1, no. 3, pp. 163–185, Oct. 2005.

    Article  Google Scholar 

  13. D. Berzon and T. J. Fountain, “A memory design in QCAs using the SQUARES formalism,” in Proc. Great Lakes Symp. on VLSI, June 1999, pp. 166–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pallav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gupta, P. (2011). Circuit Design with Quantum Cellular Automata. In: Jha, N., Chen, D. (eds) Nanoelectronic Circuit Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7609-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7609-3_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7444-0

  • Online ISBN: 978-1-4419-7609-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics