Skip to main content

Introduction to Nanotechnology

  • Chapter
  • First Online:

Abstract

The semiconductor industry has showcased a spectacular exponential growth in the number of transistors per integrated circuit for several decades, as predicted by Moore’s law. Figure 1 shows the future technology trend predicted by ITRS (International Technology Roadmap for Semiconductors) [1]. By 2023, the physical gate length would scale down to 4.5 nm. Actually, according to a study [2], future devices could theoretically scale down to 1.5 nm with 0.04 ps switching speed and 0.017 eV energy consumption. However, maintaining such an exponential growth rate is a major challenge. Physical dimensions and electrostatic limitations faced by conventional process and fabrication technologies will likely thwart the dimensional scaling of complementary metal-oxide-semiconductor (CMOS) devices within the next decade. Figure 2 from ITRS shows that after 2016, the manufacturable solutions are unknown (the shaded area).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. International Technology Roadmap for Semiconductors, http://www.itrs.net/

  2. V.V. Zhirnov, R.K. Cavin, J.A. Hutchby, and G.I. Bourianoff, “Limits to binary logic switch scaling: A Gedanken model,” Proc. IEEE 91(11):1934–1939, 2003.

    Article  Google Scholar 

  3. T.-J. King, “FinFETs for nanoscale CMOS digital integrated circuits,” Proc. IEEE/ACM Int. Conf. Computer-Aided Design, San Diego, CA, pp. 207–210, 2005.

    Google Scholar 

  4. P. Beckett, “A fine-grained reconfigurable logic array based on double-gate transistors,” Proc. IEEE Int. Field-Programmable Technol. Conf., December 16–18, pp. 260–267, 2002.

    Google Scholar 

  5. K. Yuen, T. Man, and A.C.K. Chan, “A 2-bit MONOS nonvolatile memory cell based on double-gate asymmetric MOSFET structure,” IEEE Electron. Device Lett. 24:518–520, 2003.

    Article  Google Scholar 

  6. A. Bhoj and N.K. Jha, “Pragmatic design of gated-diode FinFET DRAMs,” Proc. IEEE Int. Conf. Computer Design, Lake Tahoe, CA, October 4–7, 2009.

    Google Scholar 

  7. B. Swahn and S. Hassoun, “Gate sizing: FinFETs vs. 32-nm bulk MOSFETs,” Proc. Design Automation Conf., Lake Tahoe, CA, July 24–28, pp. 528–531, 2006.

    Google Scholar 

  8. C.-Y. Lee and N.K. Jha, “FinFET-based dynamic power management of on-chip interconnection networks through adaptive back-gate biasing,” Proc. IEEE Int. Conf. Computer Design, Lake Tahoe, CA, October 4–7, 2009.

    Google Scholar 

  9. S. Iijima, “Carbon nanotubes: Past, present, and future,” Phys. B 323(1–4):1–5, 2002.

    Article  Google Scholar 

  10. J. Deng, N. Patil, K. Ryu, A. Badmaev, C. Zhou, S. Mitra, and H.-S. Wong, “Carbon nanotube transistor circuits: Circuit-level performance benchmarking and design options for living with imperfections,” Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC), San Francisco, CA, pp. 586–588, 2007.

    Google Scholar 

  11. J. Guo, S. Datta, and M. Lundstrom, “Assessment of silicon MOS and carbon nanotube FET performance limits using a general theory of ballistic transistors,” Proc. IEEE Int. Electron Devices Meeting, pp. 711–714, 2002.

    Google Scholar 

  12. S.J. Kang et al., “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol. 2(4):230–236, 2007.

    Article  Google Scholar 

  13. N. Patil, A. Lin, E. Myers, H.S.-P. Wong, and S. Mitra, “Integrated wafer-scale growth and transfer of directional carbon nanotubes and misaligned-carbon-nanotube-immune logic structures,” Proc. Symp. VLSI Technology, Honolulu, HE, pp. 205–206, 2008.

    Google Scholar 

  14. W. Zhou, C. Rutherglen, and P. Burke, “Wafer-scale synthesis of dense aligned arrays of single-walled carbon nanotubes,” Nano Res. 1:158–165, 2008.

    Article  Google Scholar 

  15. R. Martel, T. Schmidt, H.R. Shea, T. Hertel, and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors,” Appl. Phys. Lett. 73(17):2447, 1998.

    Article  Google Scholar 

  16. S.J. Tans, A.R.M. Verschueren, and C. Dekker, “Room-temperature transistor based on a single carbon nanotube,” Nature 393(6680):49–52, 1998.

    Article  Google Scholar 

  17. A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker, “Logic circuits with carbon nanotube transistors,” Science 294(5545):1317–1320, 2001.

    Article  Google Scholar 

  18. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris, “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes,” Appl. Phys. Lett. 80(20):3817–3819, 2002.

    Article  Google Scholar 

  19. S.J. Kang, C. Kocabas, T. Ozel, M. Shim, N. Pimparkar, M.A. Alam, S.V. Rotkin, and J.A. Rogers, “High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes,” Nat. Nanotechnol. 2(4):230–236, 2007.

    Article  Google Scholar 

  20. P.G. Collins, M.S. Arnold, and P. Avouris, “Engineering carbon nanotubes and nanotube circuits using electrical breakdown,” Science 292(5517):706–709, 2001.

    Article  Google Scholar 

  21. N. Patil, A. Lin, J. Zhang, H. Wei, K. Anderson, H.-S.P. Wong, and S. Mitra, “VMR: VLSI-compatible metallic carbon nanotube removal for imperfection-immune cascaded multi-stage digital logic circuits using carbon nanotube FETs,” Proc. IEEE Int. Electron Devices Meeting, pp. 573–576, 2009.

    Google Scholar 

  22. A. Naeemi, R. Sarvari, and J.D. Meindl, “Performance comparison between carbon nanotube and copper interconnects for gigascale integration (GSI),” IEEE Electron. Device Lett. 26:84–86, 2005.

    Article  Google Scholar 

  23. N. Srivastava and K. Banerjee, “Performance analysis of carbon nanotube interconnects for VLSI applications,” Proc. IEEE Int. Conf. Computer-Aided Design, pp. 383–390, 2005.

    Google Scholar 

  24. A. Kawabata et al., “Carbon nanotube vias for future LSI interconnects,” Proc. IEEE Int. Interconnect Tech. Conf., pp. 251–253, June 2004.

    Google Scholar 

  25. X. Li et al., “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science 319(5867):1229–1232, 2008.

    Article  Google Scholar 

  26. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature 458(7240):877–880, 2009.

    Article  Google Scholar 

  27. K. Nakada and M. Fujita, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B 54:17954–17961, 1996.

    Article  Google Scholar 

  28. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, and M.S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol. 3(4):206–209, 2008.

    Article  Google Scholar 

  29. H. Li, C. Xu, N. Srivastava, and K. Banerjee, “Carbon nanomaterials for next-generation interconnects and passives: Physics, status, and prospects,” IEEE Trans. Electron Devices: Special Issue on Compact Interconnect Models for Gigascale Integration 56(9):1799–1821, 2009.

    Google Scholar 

  30. K.S. Novoselov et al., “Electric field effect in atomically thin carbon films,” Science 306(5696):666–669, 2004.

    Article  Google Scholar 

  31. M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett. 98(20):206805, 2007.

    Article  Google Scholar 

  32. Z. Chen, Y.-M. Lin, M.J. Rooks, and P. Avouris, “Graphene nano-ribbon electronics,” Physica E 40(2):228–232, 2007.

    Article  Google Scholar 

  33. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors,” Phys. Rev. Lett. 100(20):206803–206907, 2008.

    Article  Google Scholar 

  34. K. Nakada and M. Fujita,“Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B 54:17954–17961, 1996.

    Article  Google Scholar 

  35. Y.-W. Son, M.L. Cohen, and S.G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett. 97(21):216803, 2006.

    Article  Google Scholar 

  36. K.A. Ritter and J.W. Lyding, “The influence of edge structure on the electronic properties of graphene quantum dots and nanoribbons,” Nat. Mater. 8(3):235–242, 2009.

    Article  Google Scholar 

  37. A.K. Geim, “Graphene: Status and prospects,” Science 324(5934):1530–1534, 2009.

    Article  Google Scholar 

  38. Y. Lin et al., “Operation of graphene transistors at gigahertz frequencies,” Nano Lett. 9(1):422–426, 2009.

    Article  Google Scholar 

  39. M.P. Levendorf, C.S. Ruiz-Vargas, S. Garg, and J. Park, “Transfer-free batch fabrication of single layer graphene transistors,” Nano Lett. 9(12):4479–4483, 2009.

    Article  Google Scholar 

  40. Y. Cui, Z. Zhong, D. Wang, W. Wang, and C.M. Lieber, “High-performance silicon nanowire field-effect transistors,” Nano Lett. 3(2):149–152, 2003.

    Article  Google Scholar 

  41. Toshiba Corporation, “Toshiba develops silicon nanowire transistor for 16-nm generation and beyond,” press release, June 15, 2010. http://www.physorg.com/news195834466.html

  42. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions,” Nat. Nanotechnol. 5:225–229, 2010.

    Article  Google Scholar 

  43. M.D. Austin et al., “Fabrication of 5-nm linewidth and 14-nm pitch features by nanoimprint lithography,” Appl. Phys. Lett. 84(26):5299–5301, 2004.

    Article  Google Scholar 

  44. Y. Chen et al., “Nanoscale molecular-switch crossbar circuits,” Nanotechnology 14:462–468, 2003.

    Article  Google Scholar 

  45. Y. Cui, L.J. Lauhon, M.S. Gudiksen, J. Wang, and C.M. Lieber, “Diameter-controlled synthesis of single crystal silicon nanowires,” Appl. Phys. Lett. 78(15):2214–2216, 2001.

    Article  Google Scholar 

  46. D. Whang, S. Jin, Y. Wu, and C.M. Lieber, “Large-scale hierarchical organization of nanowire arrays for integrated nanosystems,” Nano lett. 3(9):1255–1259, 2003.

    Article  Google Scholar 

  47. L.L. Chang, L. Esaki, and R. Tsu, “Resonant tunneling in semiconductor double barriers,” Appl. Phys. Lett. 24:593–595, 1974.

    Article  Google Scholar 

  48. P. Mazumder, S. Kulkarni, M. Bhattacharya, and A. Gonzalez, “Circuit design using resonant tunneling diodes,” Proc. Int. Conf. VLSI Design: VLSI for Signal Processing, 1998.

    Google Scholar 

  49. M. Asada, S. Suzuki, and N. Kishimoto, “Resonant tunneling diodes for sub-terahertz and terahertz oscillators,” Jpn. J. Appl. Phys. 47(6):4375–4384, 2008.

    Article  Google Scholar 

  50. J.P. Sun et al., “Resonant tunneling diodes: Models and properties,” Proc. IEEE 86(4):641–661, 1998.

    Article  Google Scholar 

  51. S. Watanabe, M. Maeda, T. Sugisaki, and K. Tsutsui, “Fluoride resonant tunneling diodes on Si substrates improved by additional thermal oxidation process,” Jpn. J. Appl. Phys. 44(4B):2637–2641, 2005.

    Article  Google Scholar 

  52. M. Wilson et al., Nanotechnology: Basic Science and Emerging Technologies, London: Chapman & Hall, 2002.

    Book  Google Scholar 

  53. R. Zhang, K. Walus, W. Wang, and G.A. Jullien, “A method of majority logic reduction for quantum cellular automata,” IEEE Trans. Nanotechnol. 3(4):443–450, 2004.

    Article  Google Scholar 

  54. A. Vetteth et al., “RAM design using quantum-dot cellular automata,” Proc. Nanotechnol. Conf. Tradeshow 2:160–163, 2003.

    Google Scholar 

  55. A. Vetteh et al., “Quantum dot cellular automata carry-look-ahead adder and barrel shifter,” Proc. IEEE Emerging Telecommun. Technol. Conf., pp. 1–5, 2002.

    Google Scholar 

  56. I. Amlani et al., “Digital logic gate using quantum-dot cellular automata,” Science 284(5412):289–291, 1999.

    Article  Google Scholar 

  57. E.N. Ganesh, L. Kishore, and M. Rangachar, “Implementation of quantum cellular automata combinational and sequential circuits using majority logic reduction method,” Int. J. Nanotechnol. Appl. 2(1):89–106, 2008.

    Google Scholar 

  58. X.S. Hu, M. Crocker, M. Niemier, M. Yan, and G. Bernstein, “PLAs in quantum-dot cellular automata,” Proc. Emerging VLSI Technologies and Architectures Conf., 2006.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deming Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chen, D., Jha, N.K. (2011). Introduction to Nanotechnology. In: Jha, N., Chen, D. (eds) Nanoelectronic Circuit Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7609-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7609-3_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7444-0

  • Online ISBN: 978-1-4419-7609-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics