Skip to main content

Experimental and Theoretical Investigation into the Correlation Between Mass and Ion Mobility for Choline and Other Ammonium Cations in N2

  • Chapter
  • First Online:
  • 683 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

A number of tertiary amine and quaternary ammonium cations spanning a mass range of 60–146 amu (trimethylamine, tetramethylammonium, trimethylethylammonium, N, N-dimethylaminoethanol, choline, N, N-dimethylglycine, betaine, acetylcholine, (3-carboxypropyl)trimethylammonium) were investigated using electrospray ionization ion mobility spectrometry. Measured ion mobilities demonstrate a high correlation between mass and mobility in N2. In addition, identical mobilities within experimental uncertainties are observed for structurally dissimilar ions with similar ion masses. For example, dimethylethylammonium (88 amu) cations and protonated N, N-dimethylaminoethanol cations (90 amu) show identical mobilities (\(1.93\,{\textrm{cm}}^2\,{\textrm{V}}^{-1}\,{\textrm{s}}^{-1}\)) though N, N-dimethylaminoethanol contains a hydroxyl functional group while dimethylethylammonium only contains alkyl groups. Computational analysis was performed using the modified trajectory (TJ) method with nonspherical N2 molecules as the drift gas. The sensitivity of the ammonium cation collision cross-sections to the details of the ion-neutral interactions was investigated and compared to other classes of organic molecules (carboxylic acids and abiotic amino acids). The specific charge distribution of the molecular ions in the investigated mass range has an insignificant affect on the collision cross-section.

Reprinted with permission from Kim, H; Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Beauchamp, J. L.; Goddard, W. A.; Kanik, I. Anal. Chem. 2008, 80 (6), 1928–1936. Copyright 2008 American Chemical Society.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M. Science 1989, 246, 64–71.

    Article  CAS  Google Scholar 

  2. Shumate, C. B.; Hill, H. H. Anal. Chem. 1989, 61, 601–606.

    Article  CAS  Google Scholar 

  3. Wittmer, D.; Luckenbill, B. K.; Hill, H. H.; Chen, Y. H. Anal. Chem. 1994, 66, 2348–2355.

    Article  CAS  Google Scholar 

  4. Creaser, C. S.; Griffiths, J. R.; Bramwell, C. J.; Noreen, S.; Hill, C. A.; Thomas, C. L. P. Analyst 2004, 129, 984–994.

    Article  CAS  Google Scholar 

  5. Gidden, J.; Ferzoco, A.; Baker, E. S.; Bowers, M. T. J. Am. Chem. Soc. 2004, 126, 15132–15140.

    Article  CAS  Google Scholar 

  6. Julian, R. R.; Hodyss, R.; Kinnear, B.; Jarrold, M. F.; Beauchamp, J. L. J. Phys. Chem. B 2002, 106, 1219–1228.

    Article  CAS  Google Scholar 

  7. Counterman, A. E.; Clemmer, D. E. J. Phys. Chem. B 2001, 105, 8092–8096.

    Article  CAS  Google Scholar 

  8. Kaleta, D. T.; Jarrold, M. F. J. Phys. Chem. A 2002, 106, 9655–9664.

    Article  CAS  Google Scholar 

  9. Wu, C.; Siems, W. F.; Klasmeier, J.; Hill, H. H. Anal. Chem. 2000, 72, 391–395.

    Article  CAS  Google Scholar 

  10. Shelimov, K. B.; Clemmer, D. E.; Hudgins, R. R.; Jarrold, M. F. J. Am. Chem. Soc. 1997, 119, 2240–2248.

    Article  CAS  Google Scholar 

  11. Hudgins, R. R.; Woenckhaus, J.; Jarrold, M. F. Int. J. Mass Spectrom. 1997, 165, 497–507.

    Article  Google Scholar 

  12. Clemmer, D. E.; Jarrold, M. F. J. Mass Spectrom. 1997, 32, 577–592.

    Article  CAS  Google Scholar 

  13. Beegle, L. W.; Kanik, I.; Matz, L.; Hill, H. H. Anal. Chem. 2001, 73, 3028–3034.

    Article  CAS  Google Scholar 

  14. Johnson, P. V.; Kim, H. I.; Beegle, L. W.; Kanik, I. J. Phys. Chem. A 2004, 108, 5785–5792.

    Article  CAS  Google Scholar 

  15. Kim, H. I.; Johnson, P. V.; Beegle, L. W.; Beauchamp, J. L.; Kanik, I. J. Phys. Chem. A 2005, 109, 7888–7895.

    Article  CAS  Google Scholar 

  16. Gidden, J.; Bowers, M. T. Eur. Phys. J. D. 2002, 20, 409–419.

    Article  CAS  Google Scholar 

  17. Asbury, G. R.; Klasmeier, J.; Hill, H. H. Talanta 2000, 50, 1291–1298.

    Article  CAS  Google Scholar 

  18. Asbury, G. R.; Wu, C.; Siems, W. F.; Hill, H. H. Anal. Chim. Acta 2000, 404, 273–283.

    Article  CAS  Google Scholar 

  19. Griffin, G. W.; Dzidic, I.; Carroll, D. I.; Stillwel, R. N.; Horning, E. C. Anal. Chem. 1973, 45, 1204–1209.

    Article  CAS  Google Scholar 

  20. Berant, Z.; Karpas, Z. J. Am. Chem. Soc. 1989, 111, 3819–3824.

    Article  CAS  Google Scholar 

  21. Karpas, Z.; Berant, Z. J. Phys. Chem. 1989, 93, 3021–3025.

    Article  CAS  Google Scholar 

  22. Steiner, W. E.; English, W. A.; Hill, H. H. J. Phys. Chem. A 2006, 110, 1836–1844.

    Article  CAS  Google Scholar 

  23. Vonhelden, G.; Hsu, M. T.; Kemper, P. R.; Bowers, M. T. J. Chem. Phys. 1991, 95, 3835–3837.

    Article  CAS  Google Scholar 

  24. Mesleh, M. F.; Hunter, J. M.; Shvartsburg, A. A.; Schatz, G. C.; Jarrold, M. F. J. Phys. Chem. 1996, 100, 16082–16086.

    Article  CAS  Google Scholar 

  25. Mason, E. A.; O’hara, H.; Smith, F. J. J. Phys. B 1972, 5, 169–176.

    Article  CAS  Google Scholar 

  26. Blusztajn, J. K. Science 1998, 281, 794–795.

    Article  CAS  Google Scholar 

  27. Zeisel, S. H.; Dacosta, K. A.; Youssef, M.; Hensey, S. J. Nutr. 1989, 119, 800–804.

    CAS  Google Scholar 

  28. McHowat, J.; Jones, J. H.; Creer, M. H. J. Lipid Res. 1996, 37, 2450–2460.

    CAS  Google Scholar 

  29. Wu, C.; Siems, W. F.; Asbury, G. R.; Hill, H. H. Anal. Chem. 1998, 70, 4929–4938.

    Article  CAS  Google Scholar 

  30. Asbury, G. R.; Hill, H. H. Anal. Chem. 2000, 72, 580–584.

    Article  CAS  Google Scholar 

  31. Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  32. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  33. Harihara, P. C.; Pople, J. A. Chem. Phys. Lett. 1972, 16, 217–219.

    Article  Google Scholar 

  34. Olney, T. N.; Cann, N. M.; Cooper, G.; Brion, C. E. Chem. Phys. 1997, 223, 59–98.

    Article  CAS  Google Scholar 

  35. Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A.; Skiff, W. M. J. Am. Chem. Soc. 1992, 114, 10024–10035.

    Article  CAS  Google Scholar 

  36. Graham, C.; Imrie, D. A.; Raab, R. E. Mol. Phys. 1998, 93, 49–56.

    Article  CAS  Google Scholar 

  37. Dugan, J. V.; Palmer, R. W. Chem. Phys. Lett. 1972, 13, 144–149.

    Article  CAS  Google Scholar 

  38. Dugan, J. V.; Magee, J. L. J. Chem. Phys. 1967, 47, 3103–3112.

    Article  CAS  Google Scholar 

  39. Bowers, M. T. Gas Phase Ion Chemistry; Academic Press: New York, 1979; Vol. 1.

    Google Scholar 

  40. Wannier, G. H. Bell Syst. Tech. J. 1953, 32, 170–254.

    CAS  Google Scholar 

  41. Su, T.; Bowers, M. T. Int. J. Mass Spectrom. Ion Processes 1975, 17, 309–319.

    Article  CAS  Google Scholar 

  42. Woo, H. K.; Wang, X. B.; Lau, K. C.; Wang, L. S. J. Phys. Chem. A 2006, 110, 7801–7805.

    Article  CAS  Google Scholar 

  43. Connolly, M. L. J. Am. Chem. Soc. 1985, 107, 1118–1124.

    Article  CAS  Google Scholar 

  44. Sanner, M. F.; Olson, A. J.; Spehner, J. C. Biopolymers 1996, 38, 305–320.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (NASA), the Noyes Laboratory of Chemical Physics, California Institute of Technology, and the Material and Process Simulation Center, Beckman Institute, California Institute of Technology. Financial support through NASA’s Astrobiology Science and Technology Instrument Development, Planetary Instrument Definition and Development, and Mars Instrument Development programs is gratefully acknowledged. We appreciate the support provided by the Mass Spectrometry Resource Center in the Beckman Institute. The authors greatly appreciate Prof. Martin Jarrold at Indiana University Bloomington for generously allowing us to use and modify the Mobcal program. Hyungjun Kim and Hugh I. Kim contributed equally to this work.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, H. (2011). Experimental and Theoretical Investigation into the Correlation Between Mass and Ion Mobility for Choline and Other Ammonium Cations in N2 . In: Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7601-7_5

Download citation

Publish with us

Policies and ethics