Skip to main content

Negative Differential Resistance of Oligo (Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric Field Induced Conformational Change Mechanism

  • Chapter
  • First Online:
Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems

Part of the book series: Springer Theses ((Springer Theses))

  • 655 Accesses

Abstract

We investigate here a possible mechanism for the room temperature Negative Differential Resistance (NDR) in the Au/AN-OPE/RS/Hg self-assembled monolayer (SAM) system, where AN-OPE = 2’-amino, 5’-nitro oligo (phenylene ethynylene) and RS is a C14 alkyl thiolate. Kiehl and co-workers showed that this molecular system leads to NDR with hysteresis and sweep-rate-dependent position and amplitude in the NDR peak. To investigate a molecular basis for this interesting behavior, we combine first principles quantum mechanics (QM) and meso-scale lattice Monte Carlo (MC) methods to simulate the switching as a function of voltage and voltage rate, leading to results consistent with experimental observations. This simulation shows how the structural changes at the microscopic level lead to the NDR and sweep-rate dependent macroscopic I-V curve observed experimentally, suggesting a microscopic model that might aid in designing improved NDR systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. Esaki, L. Phys. Rev. 1958, 109, 603–604.

    Article  CAS  Google Scholar 

  2. Xue, Y. Q.; Datta, S.; Hong, S.; Reifenberger, R.; Henderson, J. I.; Kubiak, C. P. Phys. Rev. B 1999, 59, R7852–R7855.

    Article  CAS  Google Scholar 

  3. Tao, N. J. Nat. Nanotechnol. 2006, 1, 173–181.

    Article  CAS  Google Scholar 

  4. Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550–1552.

    Article  CAS  Google Scholar 

  5. Selzer, Y.; Salomon, A.; Ghabboun, J.; Cahen, D. Angew. Chem. Int. Ed. 2002, 41, 827.

    Article  CAS  Google Scholar 

  6. Pitters, J. L.; Wolkow, R. A. Nano Lett. 2006, 6, 390–397.

    Article  CAS  Google Scholar 

  7. He, J.; Lindsay, S. M. J. Am. Chem. Soc. 2005, 127, 11932–11933.

    Article  CAS  Google Scholar 

  8. Salomon, A.; Arad-Yellin, R.; Shanzer, A.; Karton, A.; Cahen, D. J. Am. Chem. Soc. 2004, 126, 11648–11657.

    Article  CAS  Google Scholar 

  9. Kiehl, R. A.; Le, J. D.; Candra, P.; Hoye, R. C.; Hoye, T. R. Appl. Phys. Lett. 2006, 88, 172102.

    Article  Google Scholar 

  10. Guisinger, N. P.; Yoder, N. L.; Hersam, M. C. Proc. Natl. Acad. Sci. USA. 2005, 102, 8838–8843.

    Article  CAS  Google Scholar 

  11. Kratochvilova, I.; Kocirik, M.; Zambova, A.; Mbindyo, J.; Mallouk, T. E.; Mayers, T. S. J. Mater. Chem. 2002, 12, 2927–2930.

    Article  CAS  Google Scholar 

  12. Rawlett, A. M.; Hopson, T. J.; Nagahara, L. A.; Tsui, R. K.; Ramachandran, G. K.; Lindsay, S. M. Appl. Phys. Lett. 2002, 81, 3043–3045.

    Article  CAS  Google Scholar 

  13. Amlani, I.; Rawlett, A. M.; Nagahara, L. A.; Tsui, R. K. Appl. Phys. Lett. 2002, 80, 2761–2763.

    Article  CAS  Google Scholar 

  14. Donhauser, Z. J.; Mantooth, B. A.; Kelly, K. F.; Bumm, L. A.; Monnell, J. D.; Stapleton, J. J.; Price, D. W.; Rawlett, A. M.; Allara, D. L.; Tour, J. M.; Weiss, P. S. Science 2001, 292, 2303–2307.

    Article  CAS  Google Scholar 

  15. Fan, F. R. F.; Lai, R. Y.; Cornil, J.; Karzazi, Y.; Bredas, J. L.; Cai, L. T.; Cheng, L.; Yao, Y. X.; Price, D. W.; Dirk, S. M.; Tour, J. M.; Bard, A. J. J. Am. Chem. Soc. 2004, 126, 2568–2573.

    Article  CAS  Google Scholar 

  16. Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 2000, 122, 3015–3020.

    Article  CAS  Google Scholar 

  17. Xiao, X. Y.; Nagahara, L. A.; Rawlett, A. M.; Tao, N. J. J. Am. Chem. Soc. 2005, 127, 9235–9240.

    Article  CAS  Google Scholar 

  18. Reed, M. A.; Chen, J.; Rawlett, A. M.; Price, D. W.; Tour, J. M. Appl. Phys. Lett. 2001, 78, 3735–3737.

    Article  CAS  Google Scholar 

  19. Chen, J.; Wang, W.; Reed, M. A.; Rawlett, A. M.; Price, D. W.; Tour, J. M. Appl. Phys. Lett. 2000, 77, 1224–1226.

    Article  CAS  Google Scholar 

  20. Sollner, T. C. L. G.; Goodhue, W. D.; Tannenwald, P. E.; Parker, C. D.; Peck, D. D. Appl. Phys. Lett. 1983, 43, 588–590.

    Article  CAS  Google Scholar 

  21. Tsuchiya, M.; Sakaki, H.; Yoshino, J. Jpn. J. Appl. Phys., Part 2-Letters 1985, 24, L466–L468.

    Article  Google Scholar 

  22. Qiu, X. H.; Nazin, G. V.; Ho, W. Phys. Rev. Lett. 2004, 93, 4.

    Google Scholar 

  23. Akdim, B.; Pachter, R. J. Phys. Chem. C 2008, 112, 3170–3174.

    Article  CAS  Google Scholar 

  24. Troisi, A.; Ratner, M. A. Nano Lett. 2004, 4, 591–595.

    Article  CAS  Google Scholar 

  25. Emberly, E. G.; Kirczenow, G. Phys. Rev. B 2001, 64, 125318.

    Article  Google Scholar 

  26. Galperin, M.; Ratner, M. A.; Nitzan, A. Nano Lett. 2005, 5, 125–130.

    Article  CAS  Google Scholar 

  27. Kresse, G.; Furthmuller, J. Phys. Rev. B 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  28. Jaguar, V. 6.5 ed.; Schrödinger Inc.: Portland, 2005.

    Google Scholar 

  29. Kim, Y. H.; Jang, S. S.; Jang, Y. H.; Goddard, W. A. Phys. Rev. Lett. 2005, 94, 156801.

    Article  Google Scholar 

  30. Schultz, P., SeqQuest Project; Sandia National Laboratories: Albuquerque, NM, 2003.

    Google Scholar 

  31. Mayo, S. L.; Olafson, B. D.; Goddard, W. A. J. Phys. Chem. 1990, 94, 8897–8909.

    Article  CAS  Google Scholar 

  32. Plimpton, S. J. J. Comput. Phys. 1995, 117, 1–19.

    Article  CAS  Google Scholar 

  33. Plimpton, S. J.; Pollock, R.; Stevens, M. The Eighth SIAM Conference on Parallel Processing for Scientific Computing Minneapolis; 1997.

    Google Scholar 

  34. Swope, W. C.; Andersen, H. C.; Berens, P. H.; Wilson, K. R. J. Chem. Phys. 1982, 76, 637–649.

    Article  CAS  Google Scholar 

  35. Lo, W. S.; Pelcovits, R. A. Phys. Rev. A 1990, 42, 7471–7474.

    Article  Google Scholar 

  36. Stokbro, K.; Taylor, J.; Brandbyge, M.; Ordejn, P.; Ann. N Y. Acad. Sci. 2003, 1006, 212–216.

    Article  CAS  Google Scholar 

  37. Candra, P. M.S. Dissertations, University of Minnesota, 2006.

    Google Scholar 

Download references

Acknowledgement

The computational work was initiated with support by the National Science Foundation (NIRT, WAG). The collaboration was supported by the Microelectronics Advanced Research Corporation (MARCO, WAG and RAK) and its Focus Centers on Functional Engineered NanoArchitectonics (FENA). The facilities of the MSC (WAG) were supported by ONR-DURIP, ARO-DURIP and the facilities of the CNBT lab (SSJ) were supported by the start-up from the MSE in Georgia Tech.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Kim, H. (2011). Negative Differential Resistance of Oligo (Phenylene Ethynylene) Self-Assembled Monolayer Systems: The Electric Field Induced Conformational Change Mechanism. In: Multiscale and Multiphysics Computational Frameworks for Nano- and Bio-Systems. Springer Theses. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7601-7_2

Download citation

Publish with us

Policies and ethics