Reconfigurable Field Programmable Gate Arrays: Hardening Solutions
- 694 Downloads
Abstract
During the past years, several mitigation techniques have been proposed in order to increase the reliability of circuits of avionics and space applications and, in particular, to remove single and multiple points of failure from the designs. Depending on the kind of FPGA technology, several mitigation techniques have been proposed. These techniques rely, on the one hand, on technological modifications, in part sustained from the progressive improvement of the technology realization process and in part from necessity of increasing the reliability and the capacity of FPGA devices to tolerate faults; on the other hand, mitigation techniques can be applied at the application level, to exploit commercial technology anyhow achieving the required reliability degree.
Keywords
Field Programmable Gate Array Very Large Scale Integration Soft Error Register Transfer Level Single Event TransientPreview
Unable to display preview. Download preview PDF.
References
- 1.The art of error correcting codes, Robert H. Morelas-Zaragoza, Wiley, 1996.Google Scholar
- 2.High level synthesis with synphony c compiler.Google Scholar
- 3.Actel Corporation, Using synplify to design in actel radiation-hardened fpgas, application note ac139 ed., May 2000.Google Scholar
- 4.S.N. Adya and I.L. Markov, Fixed-outline floorplanning: Enabling hierarchical design, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 11 (2003), no. 6, 1120–1135.CrossRefGoogle Scholar
- 5.M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, A. Marmo, S. Pastore, and G.R. Sechi, A tool for injecting seu-like faults into the configuration control mechanism of xilinx virtex fpgas, Proceedings of the 18th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Boston, MA, 2003, pp. 71–78.Google Scholar
- 6.M.J. Alexander and G. Robins, New performance-driven fpga routing algorithms, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 15 (1996), no. 12, 1505–1517.CrossRefGoogle Scholar
- 7.J.L. Andrews, J.E. Schroeder, B.L. Gingerich, W.A. Kolasinski, R. Koga, and S.E. Diehl, Single event error immune cmos ram, IEEE Transactions on Nuclear Science 29 (1982), no. 6, 2040–2043.CrossRefGoogle Scholar
- 8.Y. Arima, T. Yamashita, Y. Komatsu, T. Fujimoto, and K. Ishibashi, Cosmic-ray immune latch circuit for 90 nm technology and beyond, Digest of Technical Papers of the IEEE International Solid-State Circuits Conference San Francisco, CA, vol. 1, 2004, pp. 492–493.Google Scholar
- 9.A.J. Auberton-Herve, Soi: Materials to systems, Electron Devices Meeting, 1996. IEDM ’96., International, San Francisco, CA, 8–11 1996, pp. 3–10.Google Scholar
- 10.J.R.Azambuja, F. Sousa, L. Rosa, and F.L. Kastensmidt, Evaluating large grain tmr and selective partial reconfiguration for soft error mitigation in sram-based fpgas, Proceedings of the 15th IEEE International On-Line Testing Symposium, Lisbon 2009.Google Scholar
- 11.M. Bagatin, G. Cellere, S. Gerardin, A. Paccagnella, A. Visconti, S. Beltrami, and M. Maccarrone, Single event effects in 1gbit 90 nm nand flash memories under operating conditions, On-Line Testing Symposium, 2007. IOLTS 07. Proceedings of the 13th IEEE International, Lisbon, 8–11 2007, pp. 146–151.Google Scholar
- 12.R.J. Baker, Cmos: Circuit design, layout, and simulation, vol. 1, Wiley-IEEE, Piscataway, NJ, 2007.Google Scholar
- 13.A. Balasubramanian, B.L. Bhuva, J.D. Black, and L.W. Massengill, Rhbd techniques for mitigating effects of single-event hits using guard-gates, IEEE Transactions on Nuclear Science 52 (2005), no. 6, 2531–2535.CrossRefGoogle Scholar
- 14.H.J. Barnaby, Total-ionizing-dose effects in modern cmos technologies, IEEE Transactions on Nuclear Science 53 (2006), no. 6, 3103–3121.CrossRefGoogle Scholar
- 15.N. Battezzati, S. Gerardin, A. Manuzzato, D. Merodio, A. Paccagnella, C. Poivey, L. Sterpone, and M. Violante, Methodologies to study frequency-dependent single event effects sensitivity in flash-based fpgas, IEEE Transactions on Nuclear Science 56 (2009), no. 6, 3534–3541.CrossRefGoogle Scholar
- 16.N. Battezzati, S. Gerardin, A. Manuzzato, A. Paccagnella, S. Rezgui, L. Sterpone, and M. Violante, On the evaluation of radiation-induced transient faults in flash-based fpgas, On-Line Testing Symposium, 2008. IOLTS ’08. Proceedings of the 14th IEEE International, Washington, DC, 7–9 2008, pp. 135–140.Google Scholar
- 17.N. Battezzati, D. Serrone, and M. Violante, A new framework for the automatic insertion of mitigation structures in circuits netlists. Proceedings of the 16th IEEE International On-Line Testing Symposium, Corfu Island, 2010.Google Scholar
- 18.M.P. Baze, S.P. Buchner, and D. McMorrow, A digital cmos design technique for seu hardening, IEEE Transactions on Nuclear Science 47 (2000), no. 6, 2603–2608.CrossRefGoogle Scholar
- 19.P. Bellows and B. Hutchings, Jhdl – an hdl for reconfigurable systems, Proceedings of IEEE Symposium on FPGAs for Custom Computing Machines, Napavalley, CA, 1998.Google Scholar
- 20.J.M. Benedetto, P.H. Eaton, D.G. Mavis, M. Gadlage, and T. Turflinger, Digital single event transient trends with technology node scaling, IEEE Transactions on Nuclear Science 53 (2006), no. 6, 3462–3465.CrossRefGoogle Scholar
- 21.E. Bergeron, M. Feeley, and J.P. David, Toward on-chip jit synthesis on xilinx virtexii-pro fpgas, IEEE Northeast Workshop on Circuits and Systems, Montreal, 2007, pp. 642–645.Google Scholar
- 22.V. Betz and J. Rose, Directional bias and non-uniformity in fpga global routing architectures, Computer-Aided Design, 1996. ICCAD-96. Digest of Technical Papers, proceedings of the 1996 IEEE/ACM International Conference on San Jose, CA, 10–14 1996, pp. 652–659.Google Scholar
- 23.H.E. Boesch, Jr., T.L. Taylor, L.R. Hite, and W.E. Bailey, Time-dependent hole and electron trapping effects in simox buried oxides, IEEE Transactions on Nuclear Science 37 (1990), no. 6, 1982–1989.CrossRefGoogle Scholar
- 24.B. Bridgford, C. Carmichael, and C.W. Tseng, Correcting single-event upsets in virtex-ii platform fpga configuration memory, Xilinx, xapp779 ed., February 2007.Google Scholar
- 25.P. Brinkley, A. Carmichael, and C. Carmichael, Seu mitigation design techniques for xqr4000xl, Xilinx, xapp181 ed., 2000.Google Scholar
- 26.M. Bruel, Silicon on insulator material technology, Electronics Letters 31 (1995), no. 14, 1201–1202.CrossRefGoogle Scholar
- 27.BYU Configurable Computing Group, Byu-lanl triple modular redundancy, usage guide, version 0.5.2 ed., 2009.Google Scholar
- 28.T. Calin, M. Nicolaidis, and R. Velazco, Upset hardened memory design for submicron cmos technology, IEEE Transactions on Nuclear Science 43 (1996), no. 1, 2874–2878.CrossRefGoogle Scholar
- 29.A.B. Campbell, W.J. Stapor, R. Koga, and W.A. Kolasinski, Correlated proton and heavy ion upset measurements on idt static rams, IEEE Transactions on Nuclear Science 32 (1985), no. 6, 4150–4154.CrossRefGoogle Scholar
- 30.C. Carmichael, Triple module redundancy design techniques for virtex fpgas, Xilinx, xapp197 (v1.0) ed., 2001.Google Scholar
- 31.C. Carmichael, M. Caffrey, and A. Salazar, Correcting single event upset through virtex partial reconfiguration, Xilinx, xapp216 ed., 2000.Google Scholar
- 32.V.F. Cavrois, V. Pouget, D. McMorrow, J.R. Schwank, N. Fel, F. Essely, R.S. Flores, P. Paillet, M. Gaillardin, D. Kobayashi, J.S. Melinger, O. Duhamel, P.E. Dodd, and M.R. Shaneyfelt, Investigation of the propagation induced pulse broadening (pipb) effect on single event transients in soi and bulk inverter chains, IEEE Transactions on Nuclear Science 55 (2008), no. 6, 2842–2853.CrossRefGoogle Scholar
- 33.M. Ceschia, M. Bellato, A. Paccagnella, and A. Kaminski, Ion beam testing of altera apex fpgas, Radiation Effects Data Workshop, 2002 IEEE, Phoenix, AZ, 2002, pp. 45–50.Google Scholar
- 34.B. Chappell, S.E. Schuster, and G.A. Sai-Halasz, Stability and ser analysis of static ram cells, IEEE Transactions on Electronic Devices 32 (1985), no. 2, 463–470.CrossRefGoogle Scholar
- 35.S. Chiang, R. Forouhi, W. Chen, F. Hawley, D. McCollum, E. Hamdy, and C. Hu, Antifuse structure comparison for field programmable gate arrays, International Electron Devices Meeting Technical Digest, San Fransisco, CA, 1992, pp. 611–614.Google Scholar
- 36.L.T. Clark, K.C. Mohr, and K.E. Holbert, Reverse-body biasing for radiation-hard by design logic gates, Proceedings of the 45th annual IEEE international Reliability physics symposium, Phoenix, AZ, 2007.Google Scholar
- 37.L.T. Clark, K.E. Nielsen, and K.E. Holbert, Radiation hardened by design digital i/o for high see and tid immunity, IEEE Transactions on Nuclear Science 56 (2009), no. 6, 3408–3414.CrossRefGoogle Scholar
- 38.S. Corbetta, M. Morandi, M. Novati, M.D. Santambrogio, D. Sciuto, and P. Spoletini, Internal and external bitstream relocation for partial dynamic reconfiguration, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17 (2009), no. 11, 1650–1654.CrossRefGoogle Scholar
- 39.J.D. Crawford, Edif: A mechanism for the exchange of design information, IEEE Design and Test of Computers 2 (1985), no. 1, 63–69.CrossRefGoogle Scholar
- 40.F.G. de Lima Kastensmidt, G. Neuberger, R.F. Hentschke, L. Carro, and R. Reis, Designing fault-tolerant techniques for sram-based fpgas, IEEE Design and Test of Computers 21 (2004), no. 6, 552–562.CrossRefGoogle Scholar
- 41.R.F. DeKeersmaecker and D.J. DiMaria, Electron trapping and detrapping characteristics of arsenic-implanted sio[sub 2] layers, Journal of Applied Physics 51 (1980), no. 2, 1085–1101.CrossRefGoogle Scholar
- 42.R.A.B. Devine, W.L. Warren, J.B. Xu, I.H. Wilson, P. Paillet, and J.L. Leray, Oxygen gettering and oxide degradation during annealing of si/sio2/si structures, Journal of Applied Physics 77 (1995), no. 1, 175–186.CrossRefGoogle Scholar
- 43.Y.S. Dhillon, A.U. Diril, and A. Chatterjee, Soft-error tolerance analysis and optimization of nanometer circuits, Design, Automation and Test in Europe, 2005. Proceedings, Washington, DC, vol. 1, 7–11 2005, pp. 288–293.Google Scholar
- 44.Y.S. Dhillon, A.U. Diril, A. Chatterjee, and C. Metra, Load and logic co-optimization for design of soft-error resistant nanometer cmos circuits, On-Line Testing Symposium, 2005. IOLTS 2005. Proceedings of the 11th IEEE International, French Riviera, 6–8 2005, pp. 35–40.Google Scholar
- 45.C. Ebeling, L. McMurchie, S.A. Hauck, and S. Burns, Placement and routing tools for the triptych fpga, IEEE Transactions on Very Large Scale Integration (VLSI) Systems 3 (1995), no. 4, 473–482.CrossRefGoogle Scholar
- 46.L.J. Edgar, Method and apparatus for controlling electric currents, Tech. Report 1745175, January 1930.Google Scholar
- 47.L.J. Edgar, Device for controlling electric current, Tech. Report 1900018, March 1933.Google Scholar
- 48.E. Eto, Difference-based partial reconfiguration, Xilinx, xapp290 (v2.0) ed., December 2007.Google Scholar
- 49.J.P. Eurich and G. Roth, Edif grows up, IEEE Spectrum 27 (1990), no. 11.Google Scholar
- 50.V. Ferlet-Cavrois, P. Paillet, D. McMorrow, N. Fel, J. Baggio, S. Girard, O. Duhamel, J.S. Melinger, M. Gaillardin, J.R. Schwank, P.E. Dodd, M.R. Shaneyfelt, and J.A. Felix, New insights into single event transient propagation in chains of inverters – evidence for propagation-induced pulse broadening, IEEE Transactions on Nuclear Science 54 (2007), no. 6, 2338–2346.CrossRefGoogle Scholar
- 51.E. Fuller, M. Caffrey, P. Blain, C. Carmichael, N. Khalsa, and A. Salazar, Radiation test results of the virtex fpga and zbt sram for space based reconfigurable computing, Military and Aerospace Programmable Logic Devices (MAPLD) Conference, Washington, C, 1999.Google Scholar
- 52.T. Grötker, S. Liao, G. Martin, and S. Swan, System design with systemc, Springer, London, UK, 2002.Google Scholar
- 53.S. Habinc, Functional triple modular redundancy (ftmr) vhdl design methodology for redundancy in combinational and sequential logic, Gaisler Research, 2002.Google Scholar
- 54.J. Hagemeyer, B. Keltelhoit, M. Koester, and M. Porrmann, A design methodology for communication infrastructures on partially reconfigurable fpgas, International Conference on Field Programmable Logic and Applications, Amsterdam, 2007, pp. 331–338.Google Scholar
- 55.E. Hamdy, J. McCollum, S.-O. Chen, S. Chiang, S. Eltoukhy, J. Chang, T. Speers, and A. Mohsen, Dielectric based antifuse for logic and memory ics, International Electron Devices Meeting Technical Digest, San Francisco, CA, 1988, pp. 786–789.Google Scholar
- 56.K. Hass, J. Gambles, B. Walker, and M. Zampaglione, Mitigating single event upsets from combinational logic, Proceedings of the 7th Annual NASA Symposium on VLSI Design, Piscataway, USA, 1998.Google Scholar
- 57.V. Joshi, R.R. Rao, D. Blaauw, and D. Sylvester, Logic ser reduction through flip flop redesign, Quality Electronic Design, 2006. ISQED ’06. Proceedings of the 7th International Symposium on, Washington, DC, 27–29 2006, pp. 611–616.Google Scholar
- 58.H.J. Kahn and R.F. Goldman, The electronic design interchange format edif: present and future, Proceedings of the 29th ACM/IEEE Design Automation Conference, Anaheim, CA, 1992.Google Scholar
- 59.T. Karnik, S. Vangal, V. Veeramachaneni, P. Hazucha, V. Erraguntla, and S. Borkar, Selective node engineering for chip-level soft error rate improvement [in cmos], VLSI Circuits Digest of Technical Papers, 2002. Symposium on, Piscataway, USA, 2002, pp. 204–205.Google Scholar
- 60.M. Karunaratne, A. Sagahayroon, and S. Prodhuturi, Rtl fault modeling. Proceedings of the 48th Midwest Symposium on Circuits and Systems, Cincinnati, OH, 2005.Google Scholar
- 61.F.L. Kastensmidt, L. Sterpone, L. Carro, and M.S. Reorda, On the optimal design of triple modular redundancy logic for sram-based fpgas, Design, Automation and Test in Europe, 2005. Proceedings, Munich, vol. 2, 7–11 2005, pp. 1290–1295Google Scholar
- 62.P.J. Kim, D.S. Ku, L.S. Jeong, J.H. Yun, S.Y. Choi, and J.B. Kim, Electrical properties of pip anti-fuse for the logic circuit configuration, Proceedings of the SICE 2003 Annual Conference, vol. 3, Piscataway, USA, 2003, pp. 2980–2983.Google Scholar
- 63.R. Koga, J. George, G. Swift, C. Yui, L. Edmonds, C. Carmichael, T. Langley, P. Murray, K. Lanes, and M. Napier, Comparison of xilinx virtex-ii fpga see sensitivities to protons and heavy ions, IEEE Transactions on Nuclear Science 51 (2004), no. 5, 2825–2833.CrossRefGoogle Scholar
- 64.G.M. Koob and C. Lau, Foundations of dependable computing: Models and frameworks for dependable systems, Springer, New York, NY 1994.zbMATHGoogle Scholar
- 65.M. Köster, W. Luk, J. Hagemeyer, and M. Porrmann, Design optimizations to improve placeability of partial reconfiguration modules, Proceedings of DATE: Design, Automation and Test in Europe, Nice, 2009.Google Scholar
- 66.M. Köster, W. Luk, J. Hagemeyer, M. Porrmann, and U. Rueckert, Design optimizations for tiled partially reconfigurable systems, IEEE Transactions on Very Large Scale Integration Systems (2010).Google Scholar
- 67.A.A. Kountouris and C. Wolinski, A method for the generation of hdl code at the rtl level from a high-level formal specification language, Proceedings of the 40th Midwest Symposium on Circuits and Systems, Piscataway, USA, 1997.Google Scholar
- 68.Y.E. Krasteva, E. de la Torre, T. Riesgo, and D. Joly, Virtex ii fpga bitstream manipulation: Application to reconfiguration control systems, International Conference on Field Programmable Logic and Applications Madrid, 2006, pp. 1–4.Google Scholar
- 69.R.C. Lacoe, J.V. Osborn, R. Koga, S. Brown, and D.C. Mayer, Application of hardness-by-design methodology to radiation-tolerant asic technologies, IEEE Transactions on Nuclear Science 47 (2000), no. 6, 2334–2341.CrossRefGoogle Scholar
- 70.R.C. Lacoe, J.V. Osborn, D.C. Mayer, S. Brown, and J. Gambles, Total-dose tolerance of the commercial Taiwan semiconductor manufacturing company (tsmc) 0.35- mu;m cmos process, Radiation Effects Data Workshop IEEE, Vancouver, BC 2001, pp. 72–76.Google Scholar
- 71.C.Y. Lee, An algorithm for path connections and its applications, IEEE Transactions on Electronic Computers EC-10 (1961), no. 3, 346–365.CrossRefGoogle Scholar
- 72.W. Lei, C. Lei, W. Zhiping, S. Huabo, and W. Shuo, A novel high-density single-event upset hardened configurable sram applied to fpga, Proceedings of the International Conference on Reconfigurable Computing and FPGAs, QuintanaRoo 2009, pp. 1–5.Google Scholar
- 73.W. Liang, Y. Suge, Z. Yuanfu, and F. Long, An seu-tolerant programmable frequency divider, Proceedings of the 8th International Symposium on Quality Electronic Design, San Jose, CA, 2007, pp. 899–904.Google Scholar
- 74.H.-K. Lim and J.G. Fossum, Threshold voltage of thin-film silicon-on-insulator (soi) mosfet’s, IEEE Transactions on Electron Devices 30 (1983), no. 10, 1244–1251.CrossRefGoogle Scholar
- 75.F. Lima, L. Carro, and R. Reis, Designing fault tolerant systems into sram-based fpgas, Design Automation Conference, 2003. Proceedings, Anaheim, CA, 2–6 2003, pp. 650–655.Google Scholar
- 76.S. Lin and D.J. Costello Jr., Error control coding: Fundamentals and applications, 2 ed., Prentice Hall, Englewood Cliffs, NJ, 2004.Google Scholar
- 77.R. Lipsett, C.F. Schaefer, and C. Ussery, Vhdl, hardware description and design, Springer, Piscataway, USA, 1989.Google Scholar
- 78.F. Miller, N. Buard, G. Hubert, S. Alestra, G. Baudrillard, T. Carriere, R. Gaillard, J.M. Palau, F. Saigne, and P. Fouillat, Laser mapping of sram sensitive cells. a way to obtain input parameters for DASIE calculation code, Radiation and Its Effects on Components and Systems, 2005. RADECS 2005. Proceedings of the 8th European Conference on, Cap d’Agde 19-23 2005, pp. E2–1–E2–7.Google Scholar
- 79.K. Ming-Dou, J. Hsin-Chin, P. Jeng-Jie, and S. Tzay-Luen, Automatic methodology for placing the guard rings into chip layout to prevent latchup in cmos ic’s, Proceedings of the 8th IEEE International Conference on Electronics, Circuits and Systems, vol. 1, 2001, pp.113–116.Google Scholar
- 80.K. Ming-Dou and L. Wen-Yu, Methodology on extracting compact layout rules for latchup prevention in deep-submicron bulk cmos technology, IEEE Transactions on Semiconductor Manufacturing 16 (Piscataway, USA, 2003), no. 2, 319–334.CrossRefGoogle Scholar
- 81.S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K.S. Kim, Robust system design with built-in soft-error resilience, Computer 38 (2005), no. 2, 43–52.CrossRefGoogle Scholar
- 82.P. Mongkolkachit and B. Bhuva, Design technique for mitigation of alpha-particle-induced single-event transients in combinational logic, IEEE Transactions on Device and Materials Reliability 3 (2003), no. 3, 89–92.CrossRefGoogle Scholar
- 83.T. Monnier, F.M. Roche, and G. Cathebras, Flip-flop hardening for space applications, Proceedings of the International Workshop on Memory Technology, Design and Testing, San Jose, CA, 1998, pp. 104–107.Google Scholar
- 84.D.P. Montminy, R.O. Baldwin, P.D. Williams, and B.E. Mullins, Using relocatable bitstreams for fault tolerance, Second NASA/ESA Conference on Adaptive Hardware and Systems, Edinburgh, 2007, pp. 701–708.Google Scholar
- 85.A. Montone, F. Redaelli, M.D. Santambrogio, and S.O. Memik, A reconfiguration-aware floorplacer for fpgas, Reconfigurable Computing and FPGAs, 2008. ReConFig ’08. International Conference on, Cancur 3–5 2008, pp. 109–114.Google Scholar
- 86.W. Morris, Latchup in cmos, Reliability Physics Symposium Proceedings, 2003. 41st Annual. 2003 IEEE International, 30 2003, pp. 76–84.Google Scholar
- 87.B.J. Mrstik, H.L. Hughes, P.J. McMarr, R.K. Lawrence, D.I. Ma, I.P. Isaacson, and R.A. Walker, Hole and electron trapping in ion implanted thermal oxides and simox, IEEE Transactions on Nuclear Science 47 (Piscataway, USA, 2000), no. 6, 2189–2195.CrossRefGoogle Scholar
- 88.T. Murooka, A. Takahara, T. Miyazaki, and A. Tsutsui, An architecture-oriented routing method for fpgas having rich hierarchical routing resources, Asia and South Pacific Design Automation Conference 1998. Proceedings of the ASP-DAC ’98, Yokohama, 1998, pp. 527–533.Google Scholar
- 89.S.R. Nariani, C.T. Gabriel, and V. Jain, Improved reliability of amorphous silicon anti-fuse used in high speed fpga, Proceedings of the IEEE Custom Integrated Circuits Conference, 1994, pp. 484–487.Google Scholar
- 90.R. Naseer, J. Draper, Y. Boulghassoul, S. DasGupta, and A. Witulski, Critical charge and set pulse widths for combinational logic in commercial 90 nm cmos technology, GLSVLSI ’07: Proceedings of the 17th ACM Great Lakes symposium on VLSI, ACM, New York, NY, 2007, pp. 227–230.Google Scholar
- 91.M. Nicolaidis, A low-cost single-event latchup mitigation scheme, Proceedings of the 12th IEEE International On-Line Testing Symposium, 2006.Google Scholar
- 92.B.D. Olson, O.A. Amusan, S. Dasgupta, L.W. Massengill, A.F. Witulski, B.L. Bhuva, M.L. Alles, K.M. Warren, and D.R. Ball, Analysis of parasitic pnp bipolar transistor mitigation using well contacts in 130 nm and 90 nm cmos technology, IEEE Transactions on Nuclear Science 54 (2007), no. 4, 894–897.CrossRefGoogle Scholar
- 93.B. Osterloh, H. Michalik, S.A. Habinc, and B. Fiethe, Dynamic partial reconfiguration in space applications, NASA/ESA Conference on Adaptive Hardware and Systems, Athens, Piscataway, USA, 2009.Google Scholar
- 94.A.L.R. Pouponnot, Strategic use of see mitigation techniques for the development of the esa microprocessors: Past, present, and future, Proceedings of the 11th IEEE International On-Line Testing Symposium, French Rivieva, 2005, pp. 319–323.Google Scholar
- 95.D.K. Pradhan, Fault-tolerant computer system design, Prentice Hall PTR, Uppe Saddle River, NJ, 1996.Google Scholar
- 96.H. Quinn, P. Graham, J. Krone, M. Caffrey, and S. Rezgui, Radiation-induced multi-bit upsets in sram-based fpgas, IEEE Transactions on Nuclear Science 52 (2005), no. 6, 2455–2461.CrossRefGoogle Scholar
- 97.H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lundgreen, Domain crossing errors: Limitations on single device triple-modular redundancy circuits in xilinx fpgas, IEEE Transactions on Nuclear Science 54 (2007), no. 6, 2037–2043.CrossRefGoogle Scholar
- 98.S. Ramaswamy, Reconfigurable, high density, high speed, low power, radiation hardened fpga technology, Military and Aerospace Programmable Logic Devices (MAPLD) Conference, Amapolis, MD, 2008.Google Scholar
- 99.R.R. Rao, D. Blaauw, and D. Sylvester, Soft error reduction in combinational logic using gate resizing and flip-flop selection, IEEE International Conference on Computer-Aided Design, ICCAD, IEEE Society, San Jose, CA, 2006, pp. 502–509.Google Scholar
- 100.S. Rezgui, J.J. Wang, E.C. Tung, B. Cronquist, and J. McCollum, Comprehensive see characterization of 0.13 μ m flash-based fpgas by heavy ion beam test, Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems, 2007, pp. 1–6.Google Scholar
- 101.S. Rezgui, J.J. Wang, Y. Sun, B. Cronquist, and J. McCollum, Configuration and routing effects on the set propagation in flash-based fpgas, IEEE Transactions on Nuclear Science 55 (Piscataway, USA, 2008), no. 6, 3328–3335.CrossRefGoogle Scholar
- 102.S. Rezgui, J.J. Wang, Yinming Sun, B. Cronquist, and J. McCollum, New reprogrammable and non-volatile radiation tolerant fpga: Rta3p, Aerospace Conference, 2008 IEEE, Big sky, MI 1-8 2008, pp. 1–11.Google Scholar
- 103.J.R. Schwank, M.R. Shaneyfelt, B.L. Draper, and P.E. Dodd, Busfet-a radiation-hardened soi transistor, IEEE Transactions on Nuclear Science 46 (1999), no. 6, 1809–1816.CrossRefGoogle Scholar
- 104.M.R. Shaneyfelt, P.E. Dodd, B.L. Draper, and R.S. Flores, Challenges in hardening technologies using shallow-trench isolation, IEEE Transactions on Nuclear Science 45 (1998), no. 6, 2584–2592.CrossRefGoogle Scholar
- 105.L. Singhal and E. Bozorgzadeh, Multi-layer floorplanning on a sequence of reconfigurable designs, Field Programmable Logic and Applications, 2006. FPL ’06. International Conference on, Madrid, 28–30 2006, pp. 1–8.Google Scholar
- 106.R.K. Smeltzer, Hole trap creation in sio2 by phosphorus ion penetration of polycrystalline silicon, IEEE Transactions on Nuclear Science 29 (1982), no. 6, 1467–1470.CrossRefGoogle Scholar
- 107.D. Soderman and Y. Panchul, Implementing c designs in hardware: A full-featured ansi c to rtl verilog compiler in action, Proceedings of the International Verilog HDL Conference and VHDL International Users Forum, Santa Clava, CA, 1998.Google Scholar
- 108.J.R. Srour and J.M. McGarrity, Radiation effects on microelectronics in space, Proceedings of the IEEE 76 (1988), no. 11, 1443–1469.CrossRefGoogle Scholar
- 109.D.L. Staebler and C.R. Wronski, Reversible conductivity changes in discharge-produced amorphous si, Applied Physics Letters 31 (1977), no. 4, 292–294.CrossRefGoogle Scholar
- 110.L. Sterpone, N. Battezzati, and V. Ferlet-Cavrois, Analysis of set propagation in flash-based fpgas by means of electrical pulse injection, IEEE 10th European Conference on Radiation Effects on Component and Systems , RADECS, IEEE Society, 2009, pp. B–3.Google Scholar
- 111.L. Sterpone and M. Violante, Analysis of the robustness of the tmr architecture in sram-based fpgas, IEEE Transactions on Nuclear Science 52 (Piscataway, USA, 2005), no. 5, 1545–1549.CrossRefGoogle Scholar
- 112.L. Sterpone and M. Violante, A new analytical approach to estimate the effects of seus in tmr architectures implemented through sram-based fpgas, IEEE Transactions on Nuclear Science 52 (2005), no. 6, 2217–2223.CrossRefGoogle Scholar
- 113.L. Sterpone and M. Violante, A new reliability-oriented place and route algorithm for sram-based fpgas, IEEE Transactions on Computers 55 (2006), no. 6, 732–744.CrossRefGoogle Scholar
- 114.E. Sun, J. Moll, J. Berger, and B. Alders, Breakdown mechanism in short-channel mos transistors, Electron Devices Meeting, 1978 International, vol. 24, 1978, pp. 478–482.Google Scholar
- 115.G.M. Swift, S. Rezgui, J. George, C. Carmichael, M. Napier, J. Maksymowicz, J. Moore, A. Lesea, R. Koga, and T.F. Wrobel, Dynamic testing of xilinx virtex-ii field programmable gate array (fpga) input/output blocks (iobs), IEEE Transactions on Nuclear Science 51 (Piscataway, USA, 2004), no. 6, 3469–3474.CrossRefGoogle Scholar
- 116.S.M. Sze and K.K. Ng, Physics of semiconductor devices, 2 ed., Wiley, New York, NY 2007.Google Scholar
- 117.T. Taghavi, S. Ghiasi, and M. Sarrafzadeh, Routing algorithms: architecture driven rerouting enhancement for fpgas, Proceedings of the IEEE International Symposium on Circuits and Systems, Island of kos 2006.Google Scholar
- 118.M.T. Takagi, I. Yoshii, N. Ikeda, H. Yasuda, and K. Hama, A highly reliable metal-to-metal antifuse for high-speed field programmable gate arrays, International Electron Devices Meeting Technical Digest, San Fransisco, CA, 1993, pp. 31–34.Google Scholar
- 119.H. Tan and R.F. DeMara, A physical resource management approach to minimizing fpga partial reconfiguration overhead, IEEE International Conference on Reconfigurable Computing and FPGA’s, San Luis Potosi, 2006.Google Scholar
- 120.S. Thakur, Y-W. Chang, D.F. Wong, and S. Muthukrishnan, Algorithms for an fpga switch module routing problem with application to global routing, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16 (1997), no. 1, 32–46.CrossRefGoogle Scholar
- 121.Y.P. Tsividis, Operation and modeling of the mos transistor, McGraw-Hill, New York, NY, 1987.Google Scholar
- 122.R. Van Bentum and H. Vogt, Structural characterization of local simox-substrates, SOI Conference, 1998. Proceedings, 1998 IEEE International, Stuart, FL, 5–8 1998, pp. 49–50.Google Scholar
- 123.M. Vasilko, Dynasty: A temporal floorplanning based cad framework for dynamically reconfigurable logic systems, Proceedings of the 9th International Workshop on Field-Programmable Logic and Applications, Glasgow, 1999, pp. 124–133.Google Scholar
- 124.S. Voldman, E. Gebreselasic, L. Lanzerotti, T. Larsen, N. Feilchenfeld, S. St. Onge, A. Joseph, and J. Dunn, The influence of a silicon dioxide-filled trench isolation structure and implanted sub-collector on latchup robustness, Reliability Physics Symposium. Proceedings of the 43rd Annual 2005 IEEE International, Barcelona April 2005, pp. 112–120.Google Scholar
- 125.J.J. Wang, S. Samiee, H.-S. Chen, C.-K. Huang, M. Cheung, J. Borillo, S.-N. Sun, B. Cronquist, and J. McCollum, Total ionizing dose effects on flash-based field programmable gate array, IEEE Transactions on Nuclear Science 51 (2004), no. 6, 3759–3766.CrossRefGoogle Scholar
- 126.W. Wang, Rc hardened fpga configuration sram cell design, Electronics Letters 40 (2004), no. 9, 525–526.CrossRefGoogle Scholar
- 127.W. Wang and H. Gong, Edge triggered pulse latch design with delayed latching edge for radiation hardened application, IEEE Transactions on Nuclear Science 51 (2004), no. 2, 3626–3630.CrossRefMathSciNetGoogle Scholar
- 128.W.L. Warren, M.R. Shaneyfelt, D.M. Fleetwood, J.R. Schwank, P.S. Winokur, and R.A.B. Devine, Microscopic nature of border traps in mos oxides, IEEE Transactions on Nuclear Science 41 (1994), no. 6, 1817–1827.CrossRefGoogle Scholar
- 129.M. Watanabe and F. Kobayashi, Optically reconfigurable gate arrays vs. asics, Proceedings of the IEEE Asia Pacific Conference on Circuits and Systems, Singapore, 2006, pp. 1164–1167.Google Scholar
- 130.G. Wirth, F.L. Kastensmidt, and I. Ribeiro, Single event transients in logic circuits-load and propagation induced pulse broadening, IEEE Transactions on Nuclear Science 55 (2008), no. 6, 2928–2935.CrossRefGoogle Scholar
- 131.R.J. Wong and K.E. Gordon, Reliability mechanism of the unprogrammed amorphous silicon antifuse, Reliability Physics Symposium, 1994. Proceedings of the 32nd Annual Proceedings, IEEE International, San Jose, CA, 11–14 1994, pp. 378–382.Google Scholar
- 132.M.A. Xapsos, G.P. Summers, and E.M. Jackson, Enhanced total ionizing dose tolerance of bulk cmos transistors fabricated for enhanced total ionizing dose tolerance of bulk cmos transistors fabricated for ultra-low power application ultra-low power applications, IEEE Transactions on Nuclear Science 46 (1999), no. 6, 1697–1701.CrossRefGoogle Scholar
- 133.Xilinx, Planahead user guide, ug632 (v 11.4) ed., December 2009.Google Scholar
- 134.C.R. Yount and D.P. Siewiorek, A methodology for the rapid injection of transient hardware errors, IEEE Transactions on Computers 45 (1996), no. 8, 881–891zbMATHCrossRefGoogle Scholar
- 135.P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, Temporal floorplanning using the t-tree formulation, Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM International Conference on, Edinburg, 7–11 2004, pp. 300–305.Google Scholar
- 136.W. Zhao, E. Belhaire, V. Javerliac, C. Chappert, and B. Dieny, Evaluation of a non-volatile fpga based on mram technology, Proceedings of the IEEE International Conference on Integrated Circuit Design and Technology, Piscataway, USA, 2006, pp. 1–4.Google Scholar