Skip to main content

Monoliths and Fibrous Cellulose Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Cellulose aerogels can be produced by using several methods, yielding materials with extremely low densities. Their structure can be described as a type of nanofelt, which means that the elementary fibrils of cellulose are arranged in a random three-dimensional (3D) network. Aerogels made either by freeze or supercritical drying of dissolved cellulose nanofibrils can be transformed into filaments, establishing the first open porous filament for possible textile applications. They can also be converted to carbon aerogel monoliths and filaments opening up new fields of application. The review describes the different methods developed by several research groups worldwide to produce low density cellulose monoliths and filaments. It presents the microstructures obtained with various methods and the properties of cellulose aerogels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zugenmaier P (2008) Crystalline Cellulose and Derivatives, Springer Series in Wood Sciences, Springer-Verlag, Berlin.

    Book  Google Scholar 

  2. Marsh J T, Wood F C (1939) An Introduction to the Chemistry of Cellulose, Van Nostrand, New York.

    Google Scholar 

  3. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, vols 1 and 2. Wiley-VCH, Weinheim.

    Book  Google Scholar 

  4. Hearle J W S (1958) A Fringed Fibril Theory of Structure in Crystalline Polymers. J Polymer Sci 28: 432–435.

    Article  CAS  Google Scholar 

  5. Botany Visual Resources Library (2001) McGraw-Hill, NY and also Uno G, Storey R, Moore R, Principles of Botany, McGraw Hill, NY.

    Google Scholar 

  6. Weatherwax R C, Caulfield D F (1971) Cellulose aerogels: an improved method preparing a highly expanded form of dry cellulose. Tappi 54: 985–986.

    CAS  Google Scholar 

  7. Alince B (1975) Porosity of swollen solvent-exchanged cellulose and its collapse during final removal. Colloid & Polymer Sci 253: 720–729.

    Article  CAS  Google Scholar 

  8. Tan C, Fung M, Newman J K, Vu C (2001) Organic aerogels with very high impact strength. Adv Mater 13: 644–646.

    Article  CAS  Google Scholar 

  9. Dieter G E (1986) Mechanical Metallurgy, McGraw-Hill, New York, 3rd Edition.

    Google Scholar 

  10. Jin H, Nishiyama, Wada Y M, Kuga S (2004), Nanofibrillar cellulose aerogels. Colloids and Surfaces A: Pysicochem. Eng. Aspects, 240: 63–67.

    Article  CAS  Google Scholar 

  11. Fischer S (2003) Anorganische Salzschmelzen – ein unkonventionelles Löse- und Reaktionsmedium für Cellulose, Habilitation thesis, TU Bergakademie Freiberg, Germany.

    Google Scholar 

  12. Fischer, S, Leipner H, Thümmler K, Brendler E, Peters J (2003) Inorganic molten salts as solvents for cellulose. Cellulose 10: 227–236.

    Article  CAS  Google Scholar 

  13. Frey M W, Theil M H (2004) Calculated phase diagrams for cellulose/ammonia/ammonium thiocyanate solutions in comparison to experimental results. Cellulose 11: 53–63.

    Article  CAS  Google Scholar 

  14. Phillip B, Schleicher H, Wagenknecht W (1977) Non-aqeous solvents of cellulose. Chemtech 7: 702–709.

    Google Scholar 

  15. Hoepfner S, Ratke L, unpublished research.

    Google Scholar 

  16. Voss D, Brück S, Ratke L (2003) Aeromats – Ultraleichte Konstruktionswerkstoffe auf Aerogelbasis, in: Verbundwerkstoffe, Degischer H P, Ed., pp 505 – 509.

    Google Scholar 

  17. Ishida O, Kim D-Y, Kuga S, Nishiyama Y, Malcol Brown R (2004) Microfibrillar carbon from native cellulose. Cellulose 11: 475–480.

    Article  CAS  Google Scholar 

  18. Fischer F, Rigacci, Pirard R, Berthon-Fabry S, Achard P (2006) Cellulose-based aerogels. Polymer 47: 7636–7645.

    Article  CAS  Google Scholar 

  19. Innerlohinger J, Weber H K, Kraft G (2006) Aerocellulose: Aerogels and Aerogel-like Materials made from Cellulose. Macromol Symp 244: 126–135.

    Article  CAS  Google Scholar 

  20. Cibik T (2003) Untersuchungen am System NMMO/H2O/Cellulose, PhD thesis, TU Berlin, Germany.

    Google Scholar 

  21. Walker M, Zimmermann R L, Whitcombe G P, Humbert H H (1997) N-Methylmorpholinoxid (NMMO) – Die Entwicklung eines Lösemittels zur industriellen Produktion von Zellulosefasern, Lenzinger Berichte pp 76–80.

    Google Scholar 

  22. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2007) Ultralight-Weight Cellulose Aerogels from NBnMO-Stabilized Lyocell Dopes. Res Lett Mater Sci Volume 2007, Article ID 73724.

    Google Scholar 

  23. Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: Highly porous, ultra-lightweight materials. Holzforschung 62: 129–135.

    Article  CAS  Google Scholar 

  24. Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 15: 121–129.

    Article  CAS  Google Scholar 

  25. IHV (2007) Industrieverband Hartschaum eV, Heidelberg, Germany, http://www.styropor.de

  26. Gavillon R, Budtova T (2008) Aerocellulose: New Highly Porous Cellulose Prepared from Cellulose-NaOH Aqeous Solutions. Biomacromolecules 9: 269–277.

    Article  CAS  Google Scholar 

  27. Pinnow M, Fink H-P, Fanter C, Kunze J (2008) Characterization of Highly Porous Materials from Cellulose Carbamate. Macromol Symp 262: 129–139.

    Article  CAS  Google Scholar 

  28. Cai J, Kimura S, Wada M, Kuga S, Zhang L (2008) Cellulose Aerogels from Aqueous Alkali Hydroxide–Urea Solution, ChemSusChem 1: 149 – 154.

    Article  CAS  Google Scholar 

  29. Reichenauer G, Scherer G W (2001) Extracting the pore size distribution of compliant materials from nitrogen adsorption, Colloids and Surfaces A, 187–188: 41–50.

    Article  Google Scholar 

  30. Deng M, Zhou Q, Du A, Van Kasteren J, Wang Y (2009) Preparation of nanoporous cellulose foams from cellulose-ionic liquid solutions. Materials Lett 63: 1851–1854.

    Article  CAS  Google Scholar 

  31. Rogowin Z A (1982) Chemiefasern, Thieme Verlag, Stuttgart, Germany.

    Google Scholar 

  32. Aaltonen O, Jauhiainen O (2009) The preparation of lignocellulosic aerogels from ionic liquid solutions. Carbohydrate Polymers 75: 125–129.

    Article  CAS  Google Scholar 

  33. Liebner F, Haimer E, Loidl D, Tschegg S, Neouze M-A, Rosenau T, Wendland M (2009) Cellulosic aerogels as ultra-lightweight materials. Part 2: synthesis and properties. Holzforschung 63: 3–11.

    Article  CAS  Google Scholar 

  34. Schmenk B, Ratke L, Gries T (2008) Solution spinning process for porous cellulose aerogel filaments, In: Dörfel A (Ed.): Proceedings of the 2nd Aachen-Dresden International Textile Conference, Dresden, December 04-05, 2008. Dresden: Institute of Textile and Clothing Technology, TU Dresden, 2008.

    Google Scholar 

  35. Hacker H, Gries T, Popescu C, Ratke L (2009) Solution spinning process for highly porous, nanostructured cellulose fibers. Chemical Fibers Int 59: 85 – 87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Ratke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratke, L. (2011). Monoliths and Fibrous Cellulose Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics