Skip to main content

Preparation of TiO2 Aerogels-Like Materials Under Ambient Pressure

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Highly porous titania is attractive because of various applications such as photocatalysts. Mesoporous titania gels can be prepared by the sol–gel method with templating. The incorporated surfactant micelles or polymer aggregates in wet gels prevent the shrinkage while drying under ambient pressure. The specific surface area, porosity, and pore size, depending on the preparation conditions, for example, species of templating materials, are much larger than those of xerogels but not larger than those of aerogels. The performance of porous titania, for example, the photocatalytic activity, can be improved with suitable pore structure for specific applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricke J (1986) Aerogels – a fascinating class of high-performance porous solids. in “Aerogels” Ed. Fricke J, Springer, Berlin: 2–19

    Google Scholar 

  2. Huesing N, Shubert U (1998) Aerogels – airy materials. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  3. Teichner S J (1986) Aerogels of inorganic oxides. in in “Aerogels” Ed. Fricke J, Springer, Berlin: 22–30

    Google Scholar 

  4. Matthews R W (1987) Photooxidation of organic impurities in water using thin films of titanium dioxide. J Phys Chem 91: 3328–3333

    Article  CAS  Google Scholar 

  5. Matthews L R, Avnir D, Modestov A D, Sampath S, Lev O (1997) The incorporation of titanium into modified silicates for solar photodegradation of aqueous species. J Sol-Gel Sci Tech 8:619–623

    CAS  Google Scholar 

  6. O’Regan B, Graetzel M (1991) A low-cost, high-efficiency solar cell base on dye-sensitized colloidal TiO2 films. Nature 353:737–740

    Article  Google Scholar 

  7. Traversa E, Di Vona M L, Licoccia S, Sacerdoti M (2000) Sol-gel nanosized semiconducting titania-based powders for thick-film gas sensors. J.Sol-Gel Sci Tech 19:193–196

    Article  CAS  Google Scholar 

  8. Wang R, Hashimoto k, Fijishima A, Chikuni M, Kojima E, Kitamura A, Shimohigishi M, Watanabe T (1997) Light-induced amphiphilic surfaces. Nature 388:431–432

    Google Scholar 

  9. Hirashima H, Kojima C, Kohama K, Imai H (1997) Application of alumina aerogels as catalysts. J Sol-Gel Sci Techn 8:843–846

    CAS  Google Scholar 

  10. Hirashima H, Imai H, Balek V (1998) Characterization of alumina gel catalysts by emanation thermal analysis (ETA). J Sol-Gel Sci Techn 19:399–402

    Article  Google Scholar 

  11. Willey R J, Wang C-T, Peri J B (1995) Vanadium-titanium oxide aerogel catalysts. J Non-Cryst Solids 186:408–414

    Article  CAS  Google Scholar 

  12. Hong-Van C, Zegaoui O, Pichat P (1998) Vanadia-titania aerogel deNOx catalysts. J Non-Cryst Solids 225:157–162

    Article  Google Scholar 

  13. Beghi M, Chiurlo P, Costa L, Plladino M, Pirini M F (1992) Structural investigation of the silica-titania gel/glass transition. J Non-Cryst Solids 145:175–179

    Article  CAS  Google Scholar 

  14. Yoda S, Tasaka Y, Uchida K, Kawai A, Oshima S, Ikazaki F (1998) TiO2-impregnated SiO2 aerogels by alcohol supercritical drying with zeolite. J Non-Cryst Solids 225:105–110

    Article  CAS  Google Scholar 

  15. Yoda S, Otake K, Takabayashi Y, Sugeta T, Sato T (2001) Effects of supercritical impregnation conditions on the properties of silica-titania aerogels. J Non-Cryst Solids 285:8–12

    Article  CAS  Google Scholar 

  16. Pietron J J, Rolison D R (2001) Electrochemically induced surface modification of titanols in a ‘nanoglued’ titania aerogel composite film. J Non-Cryst Solids 285:13–21

    Article  CAS  Google Scholar 

  17. Pietron J J, Rolison D R (2004) Improving the efficiency of titania aerogel-based photovoltaic electrodes by electrochemically grafting isopropyl moieties on the titania surface. J Non-Cryst Solids 350:107–112

    Article  CAS  Google Scholar 

  18. Tursiloadi S, Imai H, Hirashima H (2004) Preparation and characterization of mesoporous titania-alumina ceramic by modified sol-gel method. J Non-Cryst Solids 350:271–276

    Article  CAS  Google Scholar 

  19. Shimizu K, Imai H, Hirashima H, Tsukuma K (1999) Low-temperature synthesis of anatase thin films on glass and organic substrates by direct deposition from aqueous solutions. Thin Solid Films 351:220–224

    Article  CAS  Google Scholar 

  20. Imai H, Takei Y, Shimizu K, Matsuda M, Hirashima H (1999) Direct preparation of anatase TiO2 nanotubes in porous alumina membranes. J Mater Chem. 9:2971–2972

    Article  CAS  Google Scholar 

  21. Smith D.M, Stein D, Anderson J M, Ackerman W (1995) Preparation of low-density xerogels at ambient pressure. J Non-Cryst Solids 186:104–112

    Article  CAS  Google Scholar 

  22. Prakash S S, Brinker C J, Hurd A.J (1995) Silica aerogel films at ambient pressure. J Non-Cryst Solids 190:264-275

    Article  CAS  Google Scholar 

  23. Land V, Harris T.M, Teeters D C (2001) Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst Solids 283:11–17

    Article  CAS  Google Scholar 

  24. Kajihara K, Nakanishi K, Tanaka K, Hirano K, Soga N (1998) Preparation of macroporous titania films by a sol-gel dip-coating method from the system containing poly(ethylene glycol). J Am Ceram Soc 81:2670–2676

    Article  CAS  Google Scholar 

  25. Negishi N, Takeuchi K, Ibusuki T (1997) The surface structure of titanium dioxide thin film photocatalyst. Appl Surf Sci 121/122:417–420

    Article  Google Scholar 

  26. Takahashi R, Nakanishi K, Soga N, (1995) Effects of aging and solvent exchange on pore structure of silica gels with interconnected macropores. J Non-Cryst Solids 189:66–76

    Article  CAS  Google Scholar 

  27. Yusuf M M, Imai H, Hirashima H (2003) Preparation of mesoporous titania by templating with polymer and surfactant and its characterization. J Sol-Gel Sci Technol 28:97–104

    Article  CAS  Google Scholar 

  28. Hirashima H, Imai H, Balek V (2001) Preparation of mesoporous TiO2 gels and their characterization. J Non-Cryst Solids 285:96–100

    Article  CAS  Google Scholar 

  29. Yusuf M M, Chimoto Y, Imai H, Hirashima H (2003) Preparation and characterization of porous titania by modified sol-gel method. J Sol-Gel Sci Technol 26:635–640

    Article  CAS  Google Scholar 

  30. Yusuf M M, Imai H, Hirashima H (2001) Preparation of mesoporous TiO2 thin films by surfactant templating. J Non-Cryst Solids 285:90–95

    Article  CAS  Google Scholar 

  31. Yusuf M M, Imai H, Hirashima H (2002) Preparation of porous titania film by modified sol-gel method and its application to photocatalyst. J Sol-Gel Sci Technol 25:65–74

    Article  CAS  Google Scholar 

  32. Hirashima H, Imai H, Miah M Y, Bountseva I M, Beckman I N, Balek V (2004) Preparation of mesoporous titania gel films and their characterization. J Non-Cryst Solids (2004) 350: 266–270

    Article  CAS  Google Scholar 

  33. Miah M Y (2002) Preparation, characterization and application of porous titania by sol-gel method. PhD Thesis, Keio University, Japan pp.79–101

    Google Scholar 

  34. Tursiloadi S, Yamanaka Y, Hirashima H (2006) Thermal evolution of mesoporous titania prepared by CO2 supercritical extraction. J Sol-Gel Sci Technol 38:5–12

    Article  CAS  Google Scholar 

  35. Negishi N, Takeuchi, K, Ibusuki T (1997) The surface structure of titanium dioxide thin film photocatalyst. Appl Surface Sci 121/122:417–420

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Hirashima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hirashima, H. (2011). Preparation of TiO2 Aerogels-Like Materials Under Ambient Pressure. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics