Skip to main content

Sodium Silicate Based Aerogels via Ambient Pressure Drying

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

The first step in the preparation of silica aerogels is a sol–gel process producing a gel. This is followed by drying of the gel by either supercritical drying (SCD) or ambient pressure drying (APD). Traditionally, silica aerogels are prepared by the more energy-intensive and -expensive SCD method using alkoxide precursors such as tetraethoxysilane (TEOS) or tetramethoxysilane (TMOS). This choice partly restricts the commercialization of aerogels. Recent developments have shown great potential of the APD as an alternative method employing sodium silicate (Na2SiO3) as a purely inorganic precursor. The properties of such aerogels are very similar to those obtained by more conventional methods. This chapter focuses on the preparation of sodium silicate based aerogels via APD and the effect of various parameters on their physicochemical properties. The process chemistry is further contrasted with factors relevant for large-scale production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hüsing, N.; Schubert, U.; Aerogels - Airy Materials: Chemistry, Structure, and Properties, Angew. Chem. Int. Ed. 1998, 37 (1/2), 22–45

    Article  Google Scholar 

  2. Fricke, J.; Aerogels - highly tenuous solids with fascinating properties, J. Non-Cryst. Solids 1988, 100, 169–173

    Google Scholar 

  3. Pajonk, G. M., Transparent silica aerogels, J. Non-Cryst. Solids 1998, 225, 307–314

    Article  CAS  Google Scholar 

  4. Kocon, L. ; Despetis, F. ; Phalippou, J., J., Ultralow density silica aerogels by alcohol supercritical drying, J. Non-Cryst. Solids 1998, 225, 96–100

    Article  CAS  Google Scholar 

  5. Kistler, S. S., Coherent expanded aerogels and jellies, Nature 1931, 127, 741

    Article  CAS  Google Scholar 

  6. Nicolaon, G. A., Teichner, S. J., On a new process of preparation of silica xerogels and aerogels and their textural properties, Bull. Soc. Chem. France 1968, 5, 1900

    Google Scholar 

  7. Smith, D. M., Deshpande, R., Brinker, C. J., Preparation of low-density aerogels at ambient pressure, Mater. Res. Soc. Sympo. Proceedings 1992, 271, 567

    Article  CAS  Google Scholar 

  8. Prakash, S. S., Brinker, C. J., Hurd, A. J., Rao, S. M., Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage, Nature 1995, 374, 439–443

    Article  CAS  Google Scholar 

  9. Deshpande, R.; Smith, D.; Brinker, C. J., Preparation of high porosity xerogels by chemical surface modification, US Pat. No. 5,565,142, 1996

    Google Scholar 

  10. Schwertfeger, F., Frank, D., Schmidt, M., (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying, J. Non-Cryst Solids 1998, 225, 24–29

    Article  Google Scholar 

  11. Kang, S. K.; Choi, S. Y., Synthesis of low-density silica gel at ambient pressure: Effect of heat treatment, J. Mater. Sci. 2000, 35(19), 4971–4976

    Article  CAS  Google Scholar 

  12. Jeong, A. Y.; Goo, S. M.; Kim, D. P., Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel, J. Sol-Gel. Technol. 2000, 19, 483–487

    Article  CAS  Google Scholar 

  13. Wei, T.-Y.; Chang, T.-F.; Lu, S.-Y.; Chang, Y. C., Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying, J. Am. Ceram. Soc. 2007, 90(7), 2003–2007

    Article  CAS  Google Scholar 

  14. Kim, G. S.; Hyun, S. H., Effect of mixing on thermal and mechanical properties of aerogel-PVB composites, J. Mater. Sci. 2003, 38(9), 1961–1966

    Article  CAS  Google Scholar 

  15. Rao, A. P.; Pajonk, G. M.; Rao, A. V., Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels, J. Mater. Sci. 2005, 40(13), 3481–3489

    Article  CAS  Google Scholar 

  16. Rao, A. P.; Rao, A. V.; Pajonk, G. M., Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents, J. Applied Surface Sci. 2007, 253, 6032–6040

    Article  CAS  Google Scholar 

  17. Bangi, U. K. H.; Rao, A. V.; and Rao, A. P., A new route for preparation of sodium silicate based hydrophobic silica aerogels via ambient-pressure drying, Sci. Technol. Adv. Mater 2008, 9, 035006 (10pp)

    Google Scholar 

  18. Bangi, U. K.H.; Rao, A. P.; Hirashima, H.; Rao, A. V., Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids, J. Sol-Gel Sci. Technol. 2009, 50, 87–97

    Article  CAS  Google Scholar 

  19. Shewale, P. M.; Rao, A. V.; Gurav, J. L.; Rao, A. P., Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor, J. Porous Mater. 2009, 16 (1), 101–108

    Article  CAS  Google Scholar 

  20. Gurav, J. L.; Rao, A. V.; Rao, A. P.; Nadargi, D. Y.; Bhagat, S. D., Physical properties of sodium silicate based silica aerogels prepared by single step sol-gel process dried at ambient pressure, J. Alloys and Compounds 2009, 476, 397–402

    Article  CAS  Google Scholar 

  21. Shewale, P. M.; Rao, A. V.; Rao, A. P.; Bhagat, S. D., Synthesis of transparent silica aerogels with low density and better hydrophobicity by controlled sol–gel route and subsequent atmospheric pressure drying, J. Sol-Gel Sci. Technol. 2009, 49, 285–292

    Article  CAS  Google Scholar 

  22. Schwertfeger, F.; Emmerling, A.; Gross, J.; Schubert, U.; Fricke, J.; Y. A. Attia (Editor.), Sol-Gel Processing and Applications, Plenum press New York 1994, pp. 43

    Google Scholar 

  23. Lee, C. J.; Kim, G. S.; Hyun, S. H., Synthesis of silica aerogels from Waterglass via new modified ambient drying, J. Mater. Sci. 2002, 37, 2237–2241

    Article  CAS  Google Scholar 

  24. Hwang, S.-W.; Kim, T.-Y.; Hyun, S.-H., Optimization of instantaneous solvent exchange/surface modification process for ambient synthesis of monolithic silica aerogels, J. Colloid Interface Sci. 2008, 322, 224–230

    Article  CAS  Google Scholar 

  25. Hwang, S.-W.; Kim, T.-Y.; Hyun, S.-H., Effect of surface modification conditions on the synthesis of mesoporous crack-free silica aerogel monoliths from waterglass via ambient drying, Micropor. Mesopor. Mater. 2010, 130, 295–302

    Article  CAS  Google Scholar 

  26. Shi, F.; Wang, L.; Liu, J., Synthesis and characterization of silica aerogels by a novel fast ambient drying process, Mater. Lett. 2006, 60, 3718–3722

    Article  CAS  Google Scholar 

  27. Hwang, S.-W.; Jung, H.-H.; Hyun, S.-H., Ahn, Y.-S., Effective preparation of crack-free silica aerogels via ambient drying, J. Sol-Gel Sci. Technol. 2007, 41, 139–146

    Article  CAS  Google Scholar 

  28. Bhagat, S. D.; Kim, Y.-H.; Suh, K.-H.; Ahn, Y.-S., Yeo, J.-G.; Han, J.-H., Superhydrophobic silica aerogel powders with simultaneous surface modification, solvent exchange and sodium ion removal from hydrogels, Micropor. Mesopor. Mater., 2008, 112, 504–509

    Article  CAS  Google Scholar 

  29. Yokagawa, H.; Yokoyama, M., Hydrophobic silica aerogels, J. Non-Cryst. Solids 2005, 186, 23–29

    Article  Google Scholar 

  30. Provis, J. L.; Duxson, P.; Lukey, G. C.; Separovic, F.; Kriven, W. M.; van Deventer, S. J, Modelling speciation in highly concentrated alkaline silicate solutions, Ind. Eng. Chem. Res., 2005, 44, 8899–8908

    Article  CAS  Google Scholar 

  31. Swaddle, T. W. ; Salerno, J. Tregloan, P.A., Aqueous aluminates, silicates and aluminosilicates, Chem. Soc. Rev. 1994, 23, 319–325

    Article  CAS  Google Scholar 

  32. Icopini, G. A.; Brantley, S. L.; Heaney, P. J; Kinetics of silica oligomerization and nanocolloid formation as a function of pH and ionic strength, Geochim. Cosmochim. Acta 2005, 69(2), 293–303

    Article  CAS  Google Scholar 

  33. West J. K.; Hench L. L., Molecular-orbital models of silica rings and their vibrational spectra., J. Am. Ceramic Soc. 1995, 78 (4), 1093–1096

    Google Scholar 

  34. Rao, A. P.; Rao, A.V.; Bangi, U. K. H., Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions, J. Sol-gel Sci. Technol. 2008, 47, 85–94

    Article  CAS  Google Scholar 

  35. Gerber, T., Himmel, B., Hubert, C., WAXS and SAXS investigation of structure formation of gels from sodium water glass, J. Non-Cryst Solids 1994, 175, 160–168

    Article  CAS  Google Scholar 

  36. Knoblich, B., Gerber, T., Aggregation in SiO2 sols from sodium silicate solutions, J. Non-Cryst Solids 2001, 283, 109–113

    Article  CAS  Google Scholar 

  37. Sarawade, P. B.; Kim, J.-K.; Park, J.-K.; Kim, H.-K., Influence of solvent exchange on the physical properties of sodium silicate based aerogel prepared at ambient pressure, Aerosol Air Qual. Res. 2006, 6(1), 93–105

    CAS  Google Scholar 

  38. Brinker, C. J.; Scherer, G. W., Sol-Gel Science, Academic Press, San Diego 1990, pp. 358

    Google Scholar 

  39. Brinker, C. J.; Scherer, G. W., The Physics and Chemistry of Sol-Gel Processing, Academic Press, New York 1990, pp. 373

    Google Scholar 

  40. Vogel A.I., Quantitative Inorganic Analysis, ELBS and Longman, U.K. 1939, pp. 891

    Google Scholar 

  41. Rao, A. P.; Rao, A.V.; Gurav, J. L., Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor, J. Porous Materials 2008, 15, 507–512

    Article  CAS  Google Scholar 

  42. Ameen, K. B.; Rajasekar, T.; Rajasekharan, T.; Rajasekharan, M. V., The effect of heat-treatment on the physico-chemical properties of silica aerogel prepared by sub-critical drying technique, J. Sol-gel Sci. Technol. 2008, 45(1), 9–15

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venkateswara Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rao, A.V., Pajonk, G.M., Bangi, U.K.H., Rao, A.P., Koebel, M.M. (2011). Sodium Silicate Based Aerogels via Ambient Pressure Drying. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics