Skip to main content

Aerogels for Foundry Applications

  • Chapter
  • First Online:
Book cover Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

The casting of metals and alloys is very often performed into molds made of sands bonded by polymers. Resins based on, for instance, phenol–formaldehyde build bonding bridges between the sand grains, establishing a macroporous tight and strong sand form having a shape mirroring the workpiece to be cast. Any cavity in a casting is mapped by so-called cores, which are also made of polymeric-bonded sands. Organic aerogels can replace conventional polymers and offer a variety of advantages due to their nanostructure and composition, especially for cores. The development of these organic aerogels for light-metal and nonferrous heavy metal casting is described, their properties elaborated and compared with conventional ones. Transforming especially resorcinol–formaldehyde aerogels into carbon aerogels allows bonding sand grains by amorphous, nanostructured carbon with special advantages. New developments in the last few years are described, revealing that inorganic and organic aerogels in a granular form can replace a part of any sand used in foundries, leading to improved cast parts. In contrast to polymeric aerogels, silica-based ones have been used for more than a decade in solidification engineering to study fundamental aspects of metal solidification and casting. The final section describes various applications of inorganic aerogels with respect to solidification science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tilch W, Flemming E (1993) Formstoffe und FormverfahrenDeutscher Verlag fĂĽr Grundstoffindustrie, Leipzig/Stuttgart

    Google Scholar 

  2. Campbell J (2000) Castings. Butterworth-Heinemann, Oxford,Paperback Edition

    Google Scholar 

  3. Beeley PR (2001) Foundry Technology. Butterworth-Heinemann,Oxford, 2nd Edition

    Google Scholar 

  4. Brück S, Ratke L (2002) RF – Aerogels: A new binding material for foundry application. J Sol-Gel Sci Tech 26:663–666

    Article  Google Scholar 

  5. Bock V, Emmerling A, Fricke J (1998) Influence of monomer and catalyst concentration on RF and Carbon aerogel structure. J Non-Cryst Solids 225:69–73

    Article  CAS  Google Scholar 

  6. Brück S, Ratke L (2004) AeroSande – ein neuer Formstoff für Gießereianwendungen. Giessereiforschung 56:55–65

    Google Scholar 

  7. Brück S, Ratke L (2006) Mechanical properties of aerogel composites for casting purposes. J Mat Sci 41:1019–1024

    Article  Google Scholar 

  8. Reuß M, Ratke L (2009) Characterization of Carbon-AeroSands. Int J Foundry Res 61:2–11

    Google Scholar 

  9. Milow B, Ratke L (2009) German patent application 102009024013

    Google Scholar 

  10. Milow B, Ratke L, Nolte E (2006) German patent application 1020060560936

    Google Scholar 

  11. Reuß M, Ratke L (2010) Drying of aerogel bonded sands. J Mat Sci 45:3974–3980

    Article  Google Scholar 

  12. Milow B, Ratke L (2010) BTX free decomposition of polymeric aerogel binders. Int J Foundry Res, submitted

    Google Scholar 

  13. Reuß M, Ratke L, (2010) On the fraction of sand grains bounded in moulding materials – a new measurement technique. Int J Foundry Res, 62:24–29

    Google Scholar 

  14. Voss D, Ratke L (2005) Ein neuer, entgasungsarmer und verbrennbarer anorganischer Formstoff für die Gießereiindustrie – Kohlenstoff-Aerogel-Sandverbunde. Giessereiforschung 57: 18–25

    Google Scholar 

  15. Milow B, Ratke L (2008) German patent application 102008056856

    Google Scholar 

  16. Milow B, Ratke L (2008) German patent application 102008056842

    Google Scholar 

  17. BrĂĽck S, Ratke L (2005) German patent application 102006003198

    Google Scholar 

  18. Alkemper J, Ratke L, Diefenbach S (1993) Chill Casting into Aerogels. Scripta Metall et Mater 29:1495–1500

    Article  CAS  Google Scholar 

  19. Emmerling A, Lenhard W, Fricke J, Van de Vorst GAL Densification behaviour of silica aerogels upon isothermal sintering (1997) J Sol-Gel Sci Tech 8:837–842

    CAS  Google Scholar 

  20. Brinker J, Scherer GW, Sol-Gel Science. (1990) Academic Press, San Diego

    Google Scholar 

  21. Alkemper J, Sous S, Stöcker C, Ratke L (1998) Directional solidification in an aerogel furnace with high resolution optical temperature measurement. J Crystal Growth 191:252–260

    Article  CAS  Google Scholar 

  22. Tscheuschner D, Ratke L (1999) Feinguss in Aerogelen. In: Ludwig A (ed) DGM Symposium Erstarrung metallischer Schmelzen in Forschung und Gießereipraxis. Wiley-VCH, Weinheim, p. 257–264

    Google Scholar 

  23. Tscheuschner D, Ratke L (2000) Investment Casting in Silica Aerogels. Materials Science Forum 329-330:479–486

    Article  Google Scholar 

  24. Tscheuschner D, Ratke L (2001) Wedge casting of AlSiMg alloys in aerogels. In: Stefanescu DM, Ruxanda R, Tierean M, Serban C (eds), Proc Int Conf The Science of Casting and Solidification, Editura Lux Libris, Bukarest pp. 245–251

    Google Scholar 

  25. Viets R, Breuer M, Haferkamp H, KrĂĽssel T, Niemeyer M (1999) Solidification process and infrared image characteristics of permanent mold castings. Thermosense XXI, Int. Conf. on Thermal Sensing and Imaging Diagnostic Applications, Orlando

    Google Scholar 

  26. Schaper M, Haferkamp H, Niemeyer M, Pelz C, Viets R (1999) Thermal investigation of compound cast steel tools. Thermosense XXI, Int. Conf. on Thermal Sensing and Imaging Diagnostic Applications, Orlando

    Google Scholar 

  27. Haferkamp H, Bach FW, Niemeyer M, Viets R (1999) Merkmale von Wärmebildern zur Prozeßüberwachung beim Taktgießen. Aluminium 75:945–953

    CAS  Google Scholar 

  28. Haferkamp H, Bach FW, Niemeyer M, Viets R, Weber J, Breuer M, Krüssel T (1999) Tracing Thermal Process of Permanent Mould Casting. ISIE '99, Proceedings of the IEEE, Bled-Slovenia, Vol 3, pp. 1442–1447

    Google Scholar 

  29. Herfurth KT (1999) Beitrag zur Entwicklung einer Versuchs-technik fĂĽr die Beobachtung von Warmrissen und anderen mit der Erstarrung verbundenen Erscheinungen. Shaker Verlag, Aachen

    Google Scholar 

  30. Ratke L, Korekt G (2000) Solidification of Al-Pb base alloys in low gravity. Z Metallkde 91:919–927

    CAS  Google Scholar 

  31. Steinbach S, Ratke L (2004) In-Situ optical determination of fraction solid. Scripta Materialia 50:1135–1138

    Article  CAS  Google Scholar 

  32. Steinbach S, Ratke L (2005) The effect of rotating magnetic fields on the microstructure of directionally solidified Al-Si-Mg Alloys. Mat Sci Eng A413-414:200–204

    Google Scholar 

  33. Steinbach S, Ratke L (2007) The Influence of Fluid Flow on the Microstructure of Directionally Solidified AlSi-Base Alloys. Metall. Mater Trans 38A:1388–1394

    Article  CAS  Google Scholar 

  34. Steinbach S, Ratke L (2007) Experimental study on interaction of fluid flow and solidification in Al–Si–Cu alloys. Int J Cast Metals Research 20:140–144

    Article  CAS  Google Scholar 

  35. Zimmermann G, Weiss A, Mbaya Z (2005) Effect of forced melt flow on microstructure evolution in AlSi7Mg0.6 alloy during directional solidification. Mat Sci Eng A 413-414:236–242

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Ratke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ratke, L., Milow, B. (2011). Aerogels for Foundry Applications. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_34

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics