Skip to main content

Hydrophobic Silica Aerogels: Review of Synthesis, Properties and Applications

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

There are many applications for which a material must be water-resistant. Silica aerogels can have unusual properties, including high surface area, low density, low thermal conductivity, and good optical translucency. This combination of properties makes hydrophobic silica aerogels attractive materials for use in applications ranging from transparent insulation systems to drug delivery platforms. These aerogel materials have been prepared using a wide variety of techniques, including incorporation of silica precursors with non-polar substituents into the sol–gel matrix and surface modification of the matrix following gelation. In this chapter we describe the different aerogel synthesis methods, present a discussion of techniques for measuring hydrophobicity and review the extensive literature on hydrophobic silica aerogels, including information on their physical properties and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Plata, D L, Briones, Y J, Wolfe, R L, Carroll, M K, Bakrania, S D, Mandel, S G, & Anderson, A M (2004) Aerogel-platform optical sensors for oxygen gas. J Non-Cryst Solids 350: 326–335.

    Article  CAS  Google Scholar 

  2. Fesmire, J (2006) Aerogel insulation systems for space launch applications. Cryogenics 46(2–3): 111–117.

    Article  CAS  Google Scholar 

  3. Gougas, A, Ilie, D, Ilie, S, & Pojidaev, V (1999) Behavior of hydrophobic aerogel used as a cherenkov medium. Nucl Instrum Methods Phys Res, Sect A 421(1–2): 249–255.

    Article  CAS  Google Scholar 

  4. Doshi, D A, Shah, P B, Singh, S, Branson, E D, Malanoski, A P, Watkins, E B (2005) Investigating the interface of superhydrophobic surfaces in contact with water. Langmuir 21(17): 7805–7811.

    Article  CAS  Google Scholar 

  5. Smirnova, I, Mamic, J, & Arlt, W (2003) Adsorption of drugs on silica aerogels. Langmuir, 19(20): 8521–8525.

    Article  CAS  Google Scholar 

  6. Yokogawa, H, & Yokoyama, M (1995) Hydrophobic silica aerogel. J Non-Cryst Solids 186: 23–29.

    Article  CAS  Google Scholar 

  7. Miner, M R, Hosticka, B, & Norris, P M (2004) The effects of ambient humidity on the mechanical properties and surface chemistry of hygroscopic silica aerogel. J Non-Cryst Solids 350(7): 285–289.

    Article  CAS  Google Scholar 

  8. Zhang, Z, Shen, J, Ni, X, Wu, G, Zhou, B, Yang, M, Gu, X, Qian, M, & Wu, Y, (2006) Hydrophobic silica aerogels strengthened with nonwoven fibers. J Macromol Sci Part A Pure Appl Chem 43(11): 1663–1670.

    Article  CAS  Google Scholar 

  9. Zhou, B, Shen, J, Wu, Y, Wu, G, & Ni, X (2007) Hydrophobic silica aerogels derived from polyethoxydisiloxane and perfluoroalkylsilane. Mater Sci Eng, C 27(5–8): 1291–1294.

    Article  CAS  Google Scholar 

  10. Schwertfeger, F, Frank, D, & Schmidt, M (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non-Cryst Solids 225(1): 24–29.

    Article  CAS  Google Scholar 

  11. Lee, C, Kim, G, & Hyun, S (2002) Synthesis of silica aerogels from waterglass via new modified ambient drying. J Mater Sci, 37(11): 2237–2241.

    Article  CAS  Google Scholar 

  12. Bangi, U K H, Rao, A V, & Rao, A P (2008) A new route for preparation of sodium-silicate-based hydrophobic silica aerogels via ambient-pressure drying. Sci Technol Adv Mater 9(3): 035006.

    Article  Google Scholar 

  13. Bisson, A, Rigacci, A, Lecomte, D, Rodier, E, & Achard, P (2003) Drying of silica gels to obtain aerogels: Phenomenology and basic techniques. Drying Technol 21(4): 593–628.

    Article  CAS  Google Scholar 

  14. Prakash, S S, Brinker, C J, & Hurd, A J (1995) Silica aerogel films at ambient pressure. J Non-Cryst Solids 190(3): 264–275.

    Article  CAS  Google Scholar 

  15. Prakash, S S, Brinker, C J, Hurd, A J, & Rao, S M (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature, 374(6521): 439–443.

    Article  CAS  Google Scholar 

  16. Haereid, S, & Einarsrud, A (1994) Mechanical strengthening of TMOS-based alcogels by aging in silane solutions. J Sol-Gel Sci Technol 3: 1992–204.

    Article  Google Scholar 

  17. Bhagat, S D, Oh, C S, Kim, Y H, Ahn, Y S, & Yeo, J G (2007) Methyltrimethoxysilane based monolithic silica aerogels via ambient pressure drying. Microporous Mesoporous Mater 100(1–3): 350–355.

    Article  CAS  Google Scholar 

  18. Leventis, N, Palczer A, McCorkle L, Zhang G, & Sotiriou-Leventis C (2005) Nanoengineered silica-polymer composite aerogels with no need for supercritical fluid drying. J Sol-Gel Sci Tech 35: 99–105.

    Article  CAS  Google Scholar 

  19. Pajonk, G M, Repellin-Lacroix, M, Abouarnadasse, S, Chaouki, J, & Klavana, D (1990) From sol-gel to aerogels and cryogels. J Non Cryst Solids 121: 66–67.

    Article  CAS  Google Scholar 

  20. Kalinin, S, Kheifets, L, Mamchik, A, Knot'ko, A, & Vertigel, A (1999) Influence of the drying technique on the structure of silica gels. J Sol-Gel Sci Technol 15(1): 31–35.

    Article  CAS  Google Scholar 

  21. Scherer, G W (1993) Freezing gels. J Non-Cryst Solids 155(1): 1–25.

    Article  CAS  Google Scholar 

  22. Kistler, S S (1932) Coherent expanded aerogels. J Phys Chem 13: 52–64.

    Article  Google Scholar 

  23. Phalippou, J, Woignier, T, & Prassas, M (1990) Glasses from aerogels. J Mater Sci 25(7): 3111–3117.

    Article  CAS  Google Scholar 

  24. Danilyuk, A F, Gorodetskaya, T A, Barannik, G B, & Lyakhova, V F (1998) Supercritical extraction as a method for modifying the structure of supports and catalysts. React Kinet Catal Lett 63(1): 193–199.

    Article  CAS  Google Scholar 

  25. Pajonk, G M, Rao, A V, Sawant, B M, & Parvathy, N N (1997) Dependence of monolithicity and physical properties of TMOS silica aerogels on gel aging and drying conditions. J Non-Cryst Solids 209(1): 40–50.

    Article  CAS  Google Scholar 

  26. Tewari, P H, Hunt, A J, & Lofftus, K (1985) Ambient-temperature supercritical drying of transparent silica aerogels. Mater Lett 3(9): 363–367.

    Article  CAS  Google Scholar 

  27. Van Bommel, M J, & de Haan, A B (1995) Drying of silica aerogel with supercritical carbon dioxide. J Non-Cryst Solids 186: 78–82.

    Article  Google Scholar 

  28. Poco, J F, Coronado, P R, Pekala, R W, & Hrubesh, L W (1996) A rapid supercritical extraction process for the production of silica aerogels. Mat Res Soc Symp 431: 297–302.

    Article  CAS  Google Scholar 

  29. Scherer, G W, Gross, J, Hrubesh, L W, & Coronado, P R (2002) Optimization of the rapid supercritical extraction process for aerogels. J Non-Cryst Solids 311(3): 259–272.

    Article  CAS  Google Scholar 

  30. Gauthier, B M, Bakrania, S D, Anderson, A M, & Carroll, M K (2004) A fast supercritical extraction technique for aerogel fabrication. J Non-Cryst Solids 350: 238–243.

    Article  CAS  Google Scholar 

  31. Roth, T B, Anderson, A M, & Carroll, M K (2008) Analysis of a rapid supercritical extraction aerogel fabrication process: Prediction of thermodynamic conditions during processing. J Non-Cryst Solids 354(31): 3685–3693.

    Article  CAS  Google Scholar 

  32. Anderson, A M, Wattley, C W, & Carroll, M K (2009) Silica aerogels prepared via rapid supercritical extraction: Effect of process variables on aerogel properties. J Non-Cryst Solids, 355(2): 101–108.

    Article  CAS  Google Scholar 

  33. Rao, A V, & Wagh, P (1998) Preparation and characterization of hydrophobic silica aerogels. Mater Chem Phys 53(1): 13–18.

    Article  Google Scholar 

  34. Hegde, N D, Hirashima, H, & Rao, A V (2007) Two step sol-gel processing of TEOS based hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J Porous Mater 14(2): 165–171.

    Article  CAS  Google Scholar 

  35. Leventis, N, Elder, I A, Rolison, D R, Anderson, M L, & Merzbacher, C I (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties sensing oxygen near the speed of open-air diffusion. Chem Mater 11: 2837–2845.

    Article  CAS  Google Scholar 

  36. Leventis, N, Rawashdeh, A-M M, Elder, I A, Yang, J, Dass, A, & Sotiriou-Leventis, C (2004) Synthesis and Characterization of Ru(II) Tris(1,10-phenanthroline)-Electron Acceptor Dyads Incorporating the 4-benzoyl-N-methylpyridinium cation or N-Benzyl-N´-methyl-viologen Improving the Dynamic Range, Sensitivity and Response Time of Sol-Gel Based Optical Oxygen Sensors. Chem Mater 16: 1493–1506.

    Article  CAS  Google Scholar 

  37. Lee, K H, Kim, S Y, & Yoo, K I P (1995) Low-density, hydrophobic aerogels. J Non-Cryst Solids 186: 18–22.

    Article  CAS  Google Scholar 

  38. Smirnova, I, Suttiruengwong, S, & Arlt, W (2004) Feasibility study of hydrophilic and hydrophobic silica aerogels as drug delivery systems. J Non-Cryst Solids 350: 54–60.

    Article  CAS  Google Scholar 

  39. Anderson, A M, Carroll, M K, Green, E C, Melville, J M, & Bono, M S (2010) Hydrophobic silica aerogels prepared via rapid supercritical extraction. J Sol-Gel Sci Technol 53(2): 199–207.

    Article  CAS  Google Scholar 

  40. Schwertfeger, F, Glaubitt, W, & Schubert, U (1992) Hydrophobic aerogels from Si (OMe)/MeSi (OMe) mixtures. J Non-Cryst Solids 145: 85–89.

    Article  CAS  Google Scholar 

  41. Schwertfeger, F, Hüsing, N, & Schubert, U (1994) Influence of the nature of organic groups on the properties of organically modified silica aerogels. J Sol-Gel Sci Technol 2(1): 103–108.

    Article  CAS  Google Scholar 

  42. Hüsing, N, Schwertfeger, F, Tappert, W, & Schubert, U (1995) Influence of supercritical drying fluid on structure and properties of organically modified silica aerogels. J Non-Cryst Solids 186: 37–43.

    Article  Google Scholar 

  43. Rao, A V, Kulkarni, M M, Amalnerkar, D, & Seth, T (2003) Surface chemical modification of silica aerogels using various alkyl-alkoxy/chloro silanes. Appl Surf Sci 206(1–4): 262–270.

    Article  CAS  Google Scholar 

  44. Rao, A V, & Haranath, D (1999) Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels. Microporous Mesoporous Mater 30(2–3): 267–273.

    CAS  Google Scholar 

  45. Rao, A V, & Kulkarni, M M (2002) Hydrophobic properties of TMOS/TMES-based silica aerogels. Mater Res Bull 37: 1667–1677.

    Article  CAS  Google Scholar 

  46. Rao, A V, Kulkarni, M, Pajonk, G, Amalnerkar, D, & Seth, T (2003) Synthesis and characterization of hydrophobic silica aerogels using trimethylethoxysilane as a co-precursor. J Sol-Gel Sci Technol 27(2): 103–109.

    Article  CAS  Google Scholar 

  47. Rao, A V, Hegde, N D, & Shewale, P M (2007) Imperviousness of the hydrophobic silica aerogels against various solvents and acids. Appl Surf Sci 253(9): 4137–4141.

    Article  Google Scholar 

  48. Martín, L, Ossó, J O, Ricart, S, Roig, A, García, O, & Sastre, R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18(2): 207–213.

    Article  Google Scholar 

  49. El Rassy, H, & Pierre, A (2005) NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics. J Non-Cryst Solids 351(19–20): 1603–1610.

    Article  CAS  Google Scholar 

  50. Rao, A V, & Pajonk, G M (2001) Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels. J Non-Cryst Solids 285(1–3): 202–209.

    Google Scholar 

  51. Rao, A V, Pajonk, G, & Haranath, D (2001) Synthesis of hydrophobic aerogels for transparent window insulation applications. Mater Sci Technol 17(3): 343–348.

    Article  CAS  Google Scholar 

  52. Wagh, P B, & Ingale, S V (2002) Comparison of some physico-chemical properties of hydrophilic and hydrophobic silica aerogels. Ceram Int 28(10): 43–50.

    Article  CAS  Google Scholar 

  53. Rao, A V, & Kulkarni, M M (2002) Effect of glycerol additive on physical properties of hydrophobic silica aerogels. Mater Chem Phys 77(3): 819–825.

    Article  Google Scholar 

  54. Rao, A V, & Kalesh, R R (2003) Comparative studies of the physical and hydrophobic properties of TEOS based silica aerogels using different co-precursors. Sci Technol Adv Mater 4(6): 509–515.

    Article  CAS  Google Scholar 

  55. Rao, A V, Kalesh, R R, Amalnerkar, D P, & Seth, T (2003) Synthesis and characterization of hydrophobic TMES/TEOS based silica aerogels. J Porous Mater 10(1): 23–29.

    Article  CAS  Google Scholar 

  56. Rao, A V, Kalesh, R, & Pajonk, G (2003) Hydrophobicity and physical properties of TEOS based silica aerogels using phenyltriethoxysilane as a synthesis component. J Mater Sci, 38(21): 4407–4413.

    Article  CAS  Google Scholar 

  57. Štandeker, S, Novak, Z, & Knez, Ž (2007) Adsorption of toxic organic compounds from water with hydrophobic silica aerogels. J Colloid Interface Sci 310(2): 362–368.

    Article  Google Scholar 

  58. Hrubesh, L W, Coronado, P R, & Satcher, J H (2001) Solvent removal from water with hydrophobic aerogels. J Non-Cryst Solids 285(1–3): 328–332.

    Article  CAS  Google Scholar 

  59. Reynolds, J G, Coronado, P R, & Hrubesh, L W (2001) Hydrophobic aerogels for oil-spill cleanup-intrinsic absorbing properties. Energy Sources 23: 831–834.

    Article  CAS  Google Scholar 

  60. Reynolds, J G, Coronado, P R, & Hrubesh, L W (2001) Hydrophobic aerogels for oil-spill cleanup-synthesis and characterization. J Non-Cryst Solids 292: 127–137.

    Article  CAS  Google Scholar 

  61. Pauthe, M (1993) Hydrophobic silica CO2 aerogels. J Non-Cryst Solids 155: 110–114.

    Article  CAS  Google Scholar 

  62. Hegde, N D, & Rao, A V (2006) Organic modification of TEOS based silica aerogels using hexadecyltrimethoxysilane as a hydrophobic reagent. Appl Surf Sci 253(3): 1566–1572.

    Article  CAS  Google Scholar 

  63. Rao, AV, & Kalesh, R R (2004) Organic surface modification of TEOS based silica aerogels synthesized by co-precursor and derivatization methods. J Sol-Gel Sci Technol 30(3): 141–147.

    Article  CAS  Google Scholar 

  64. Bhagat, S D, & Rao, A V (2006) Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process. Appl Surf Sci 252(12): 4289–4297.

    Article  CAS  Google Scholar 

  65. Ilhan, U F, Fabrizio, E F, McCorkle, L, Scheiman, D A, Dass, A, Palczer, A, Meador, M B, Johnston, J C, & Leventis, N (2006) Hydrophobic monolithic aerogels by nanocasting polystyrene on amine-modified silica. J Mater Chem 16(29): 3046–3054.

    Article  CAS  Google Scholar 

  66. Leventis, N, Sotiriou-Leventis, C, Zhang, G, & Rawashdeh, A-M M (2002) Nano-engineering strong silica aerogels. Nano Lett 2: 957–960.

    Article  CAS  Google Scholar 

  67. Jeong, A Y, Koo, S M, & Kim, D P (2000) Characterization of hydrophobic SiO2 powders prepared by surface modification on wet gel. J Sol-Gel Sci Technol 19(1): 483–487.

    Article  CAS  Google Scholar 

  68. Wei, T, Chang, T, Lu, S, & Chang, Y (2007) Preparation of monolithic silica aerogel of low thermal conductivity by ambient pressure drying. J Am Ceram Soc 90(7): 2003–2007.

    Article  CAS  Google Scholar 

  69. Rao, A P, Pajonk, G, & Rao, A V (2005) Effect of preparation conditions on the physical and hydrophobic properties of two step processed ambient pressure dried silica aerogels. J Mater Sci 40(13): 3481–3489.

    Article  CAS  Google Scholar 

  70. Rao, A P, Rao, A V, & Pajonk, G (2005) Hydrophobic and physical properties of the two step processed ambient pressure dried silica aerogels with various exchanging solvents. J Sol-Gel Sci Technol 36(3): 285–292.

    Article  CAS  Google Scholar 

  71. Roig, A, Molins, E, Rodríguez, E, Martínez, S, Moreno-Mañas, M, & Vallribera, A (2004) Superhydrophobic silica aerogels by fluorination at the gel stage. Chem Commun 2004(20): 2316–2317.

    Article  Google Scholar 

  72. Gurav, J L, Rao, A V, & Bangi, U K H (2009) Hydrophobic and low density silica aerogels dried at ambient pressure using TEOS precursor. J Alloys Compd 471(1–2): 296–302.

    Article  CAS  Google Scholar 

  73. Shi, F, Wang, L, & Liu, J (2006) Synthesis and characterization of silica aerogels by a novel fast ambient pressure drying process. Mater Lett 60(29–30): 3718–3722.

    Article  CAS  Google Scholar 

  74. Hwang, S, Jung, H, Hyun, S, & Ahn, Y (2007) Effective preparation of crack-free silica aerogels via ambient drying. J Sol-Gel Sci Technol 41(2): 139–146.

    Article  CAS  Google Scholar 

  75. Rao, A P, Rao, A V, & Bangi, U K H (2008) Low thermalconductive, transparent and hydrophobic ambient pressure dried silica aerogels with various preparation conditions using sodium silicate solutions. J Sol-Gel Sci Technol 47(1): 85–94.

    Article  CAS  Google Scholar 

  76. Rao, A P, Rao, A V, Pajonk, G, & Shewale, P M (2007) Effect of solvent exchanging process on the preparation of the hydrophobic silica aerogels by ambient pressure drying method using sodium silicate precursor. J Mater Sci 42(20): 8418–8425.

    Article  CAS  Google Scholar 

  77. Rao, A P, Rao, A V, & Pajonk, G (2007) Hydrophobic and physical properties of the ambient pressure dried silica aerogels with sodium silicate precursor using various surface modification agents. Appl Surf Sci 253(14): 6032–6040.

    Article  CAS  Google Scholar 

  78. Rao, A P, Rao, A V, & Gurav, J L (2008) Effect of protic solvents on the physical properties of the ambient pressure dried hydrophobic silica aerogels using sodium silicate precursor. J Porous Mater 15(5): 507–512.

    Article  CAS  Google Scholar 

  79. Rao, A P, & Rao, A V (2008) Microstructural and physical properties of the ambient pressure dried hydrophobic silica aerogels with various solvent mixtures. J Non-Cryst Solids 354(1): 10–18.

    Article  CAS  Google Scholar 

  80. Shewale, P M, Rao, A V, Gurav, J L, & Rao, A P, (2009) Synthesis and characterization of low density and hydrophobic silica aerogels dried at ambient pressure using sodium silicate precursor. J Porous Mater 16(1): 101–108.

    Article  CAS  Google Scholar 

  81. Shewale, P M, Rao, A V, & Rao, A P (2008) Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl Surf Sci 254(21): 6902–6907.

    Article  CAS  Google Scholar 

  82. Tillotson, T M, Foster, K G, & Reynolds, J G (2004) Fluorine-induced hydrophobicity in silica aerogels. J Non-Cryst Solids 350: 202–208.

    Article  CAS  Google Scholar 

  83. Pierre, A C, & Pajonk, G M (2002) Chemistry of aerogels and their applications. Chem Rev 102: 4243–4265.

    Article  CAS  Google Scholar 

  84. Akimov, Y K (2003) Fields of application of aerogels (review). Instrum Exp Tech 46(3): 287–299.

    Article  CAS  Google Scholar 

  85. Adebajo, M, Frost, R, Kloprogge, J, Carmody, O, & Kokot, S (2003) Porous materials for oil spill cleanup: A review of synthesis and absorbing properties. J Porous Mater 10(3): 159–170.

    Article  CAS  Google Scholar 

  86. Rao, A V, Hegde, N D, & Hirashima, H (2007) Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. J Colloid Interface Sci 305(1): 124–132.

    Article  Google Scholar 

  87. Coleman, S J, Coronado, P R, Maxwell, R S, & Reynolds, J G (2003) Granulated activated carbon modified with hydrophobic silica aerogel-potential composite materials for the removal of uranium from aqueous solutions. Environ Sci Technol 37(10): 2286–2290.

    Article  CAS  Google Scholar 

  88. Gorle, B S K, Smirnova, I, & McHugh, M A (2009) Adsorption and thermal release of highly volatile compounds in silica aerogels. J Supercrit Fluids 48(1): 85–92.

    Article  CAS  Google Scholar 

  89. Buisson, P, Hernandez, C, Pierre, M, & Pierre, A C (2001) Encapsulation of lipases in aerogels. J Non-Cryst Solids 285(1): 295–302.

    Article  CAS  Google Scholar 

  90. Orçaire, O, Buisson, P, & Pierre, A C (2006) Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J Mol Catal B: Enzym 42(3–4): 106–113.

    Article  Google Scholar 

  91. El Rassy, H, Buisson, P, Bouali, B, Perrard, A, & Pierre, A C (2003) Surface characterization of silica aerogels with different proportions of hydrophobic groups, dried by the CO2 supercritical method. Langmuir 19(2): 358–363.

    Article  CAS  Google Scholar 

  92. El Rassy, H, Maury, S, Buisson, P, & Pierre, A (2004) Hydrophobic silica aerogel–lipase biocatalysts possible interactions between the enzyme and the gel. J Non-Cryst Solids 350: 23–30.

    Article  CAS  Google Scholar 

  93. Li, X M, Reinhoudt, D, & Crego-Calama, M (2009) What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem Soc Rev 36: 1350–1368.

    Article  CAS  Google Scholar 

  94. Rao, A V, Kulkarni, M M, & Bhagat, S D (2005) Transport of liquids using hydrophobic aerogels. J Colloid Interface Sci 285: 413–418.

    Article  CAS  Google Scholar 

  95. Truesdell, R, Mammoli, A, Vorobieff, P, Van Swol, F, & Brinker, C J (2006) Drag reduction on a patterned superhydrophobic surface. Phys Rev Lett 97(4): 044504.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the following Union College students for photographs used in this chapter: Emily Green, Jason Melville, and Caleb Wattley. Our own work with aerogels has been funded by grants from the National Science Foundation (NSF MRI CTS-0216153, NSF RUI CHE-0514527, NSF MRI CMMI-0722842, and NSF RUI CHE-0847901) and the American Chemical Society’s Petroleum Research Fund (ACS PRF 39796-B10).

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann M. Anderson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anderson, A.M., Carroll, M.K. (2011). Hydrophobic Silica Aerogels: Review of Synthesis, Properties and Applications. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics