Skip to main content

Aerogels as Platforms for Chemical Sensors

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Sensing of chemical species in air, in water and in other solvents is important for a wide variety of applications, including but not limited to monitoring chemical species that might have environmental, health, forensic, manufacturing, or security implications. The unusual properties of aerogels – very high surface area, high porosity, low density – render them particularly appealing for sensing applications. In this chapter, we survey the published reports of the application of aerogels to chemical sensing. These include sensors based on silica, silica composite, titania, carbon and clay aerogels, with spectroscopic and conductimetric detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dave B C, Dunn B, Selverstone Valentine J, Zink J I (1994) Sol-gel encapsulation methods for Biosensors. Anal Chem 66: 1120A–1127A.

    Article  CAS  Google Scholar 

  2. Lev O, Tsionsky M, Rabinovich L, Glezer V, Sampath S, Pankratov I, Gun J (1995) Organically modified sol-gel sensors. Anal Chem 67: 22A–30A.

    CAS  Google Scholar 

  3. Dunn B, Zink J I (1997) Probes of pore environment and molecule-matrix interactions in sol-gel materials. Chem Mater 9: 2280–2291.

    Article  CAS  Google Scholar 

  4. Keeling-Tucker T, Brennan J D (2001) Fluorescent probes as reporters on the local structure and dynamics in sol-gel-derived nanocomposite materials. Chem Mater 13: 3331–3350.

    Article  CAS  Google Scholar 

  5. Lukowiak A, Strek W (2009) Sensing abilities of materials prepared by sol-gel technology. J Sol-Gel Sci Tech 50: 201–215.

    Article  CAS  Google Scholar 

  6. Walcarius A, Collinson M M (2009) Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Ann Rev Anal Chem 2: 121–143.

    Article  CAS  Google Scholar 

  7. Pierre A C, Pajonk, G M (2002) Chemistry of aerogels and their applications. Chem Rev 102: 4243–4265.

    Article  CAS  Google Scholar 

  8. Ayers M R, Hunt A J (1998) Molecular oxygen sensors based on photoluminescent silica aerogels. J Non-Cryst Solids 225: 343–347.

    Article  CAS  Google Scholar 

  9. Lakowicz J R (1999) Principles of Fluorescence Spectroscopy, 2nd Ed, Kluwer Academic/Plenum Publishers.

    Google Scholar 

  10. Demas J N, DeGraff B A, Xu W (1995) Modeling of Luminescence Quenching-Based Sensors: Comparison of Multisite and Nonlinear Gas Solubility Models. Anal Chem 67: 1377–1380.

    Article  CAS  Google Scholar 

  11. Leventis N, Elder I A, Rolison D R, Anderson M L, Merzbacher C I (1999) Durable modification of silica aerogel monoliths with fluorescent 2,7-diazapyrenium moieties. Sensing oxygen near the speed of open-air diffusion. Chem Mater 11: 2837–2845.

    CAS  Google Scholar 

  12. Leventis N, Rawashdeh A-M M, Elder I A, Yang J, Dass A, Sotiriou-Leventis C (2004) Synthesis and characterization of Ru(II) tris(1,10-phenanthroline)-electron acceptor dyads incorporating the 4-benzoyl-N-methylpyridinium cation or N-benzyl-N′-methyl viologen. Improving the dynamic range, sensitivity, and response time of sol-gel-based optical oxygen sensors. Chem Mater 16: 1493–1506.

    Article  CAS  Google Scholar 

  13. Innocenzi P, Kozuka H, Yoko T (1997) Fluorescence properties of the [Ru(bpy)3]2+ complex incorporated in sol-gel-derived silica coating films. J Phys Chem B 101:2285–2291.

    Article  CAS  Google Scholar 

  14. Morris C A, Rolison D R, Swider-Lyons K E, Osburn-Atkinson E J, Merzbacher C I (2001) Modifying nanoscale silica with itself: a method to control surface properties of silica aerogels independently of bulk structure. J Non-Cryst Solids 285: 29–36.

    Article  CAS  Google Scholar 

  15. Wallace J M, Rice J K, Pietron J J, Stroud R M, Long J W, Rolison D R (2003) Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity. Nano Lett 3: 1463–1467.

    Article  CAS  Google Scholar 

  16. Plata D L, Briones Y J, Wolfe R L, Carroll M K, Bakrania S D, Mandel S G, Anderson A M (2004) Aerogel-platform optical sensors for oxygen gas. J Non-Cryst Solids 350: 326–335.

    Article  CAS  Google Scholar 

  17. Carroll M K, Barrow A J, Ferrarone J R, Phillips A F, Baig S, Anderson A M (forthcoming) Silica sol gels as platforms for chemical sensors: Spectroscopic comparison of materials prepared via two supercritical extraction methods and ambient drying. In prepar ation.

    Google Scholar 

  18. Konorov S O, Mitrokhin V P, Smirnova I V, Fedotov A B, Sidorov-Biryukov D A, Zheltikov A M (2004) Gas- and condensed-phase sensing by coherent anti-Stokes Raman scattering in a mesoporous silica aerogel host. Chem Phys Lett 394: 1–4.

    Article  CAS  Google Scholar 

  19. Konorov S O, Turner R F B, Blades M W (2007) Background-free coherent anti-Stokes Raman scattering of gas- and liquid-phase samples in a mesoporous silica aerogel host. Appl Spectrosc 61: 486–489.

    Article  CAS  Google Scholar 

  20. Anderson M L, Rolison D R, Merzbacher C I (1999) Composite aerogels for sensing applications. Proc SPIE 3790: 38–42.

    Article  CAS  Google Scholar 

  21. Boday D J, Loy D A (2009) Poly aniline nanofiber/silica aerogel composites with improved strength and sensor applications. Polymer Preprints 50: 282.

    Google Scholar 

  22. Wang C-T, Wu C-L, Chen I-C, Huang Y-H (2005) Humidity sensors based on silica nanoparticle aerogel thin films. Sensor Actuator B107(1): 402–410.

    CAS  Google Scholar 

  23. Wang C-T, Wu C-L (2006) Electrical sensing properties of silica aerogel thin films to humidity. Thin Solid Films 496: 658–664.

    Article  CAS  Google Scholar 

  24. Zhang B, Dong X, Song W, Wu D, Fu R, Zhao B, Zhang M (2008) Electrical response and adsorption performance of novel composites from polystyrene filled with carbon aerogel in organic vapors. Sensor Actuator B132(1): 60–66.

    CAS  Google Scholar 

  25. Bryning M B, Milkie D E, Islam M F, Hough L A, Kikkawa J M, Yodh A G (2007) Carbon nanotube aerogels. Adv Mater 19: 661–664.

    Article  CAS  Google Scholar 

  26. Howell A R, Fox M A (2003) Steady-state fluorescence of dye-sensitized TiO2 xerogels and aerogels as a probe for local chromophore aggregation. J Phys Chem A 107: 3300–3304.

    Article  Google Scholar 

  27. Baia M, Danciu V, Cosoveanu V, Baia L (2008) Porous nanoarchitectures based on TiO2 aerogels and Au particles as potential SERS sensor for monitoring of water quality. Vib Spectrosc 48: 206–209.

    Article  CAS  Google Scholar 

  28. Bandi S, Bell M, Schiraldi D A (2005) Temperature-responsive clay aerogel-polymer composites. Macromolecules 38: 9216–9220.

    Article  CAS  Google Scholar 

  29. Schiraldi D A, Gawryla M D, Johnson J R III, Griebel J (2007) Functional materials based on clay aerogels. Polymer Preprints 48: 988–989.

    CAS  Google Scholar 

  30. Long J W, Rolison D R (2007) Architectural design, interior decoration, and three-dimensional plumbing en route to multifunctional nanoarchitectures. Acc Chem Res 40: 854–862.

    Article  CAS  Google Scholar 

  31. Rolison D R, Long J W (2008) Architectural design en route to scaleable 3D multifunctional nanomaterials. Polymer Preprints 49: 502–503.

    CAS  Google Scholar 

  32. Arachchige I U, Brock S L (2007) Sol-gel methods for the assembly of metal chalcogenide quantum dots. Acc Chem Res 40: 801–809.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our own work with aerogels as platforms for chemical sensors has been funded by grants from the National Science Foundation (NSF MRI CTS-0216153, NSF RUI CHE-0514527, NSF MRI CMMI-0722842, and NSF RUI CHE-0847901) and the American Chemical Society’s Petroleum Research Fund (ACS PRF 39796-B10). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary K. Carroll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carroll, M.K., Anderson, A.M. (2011). Aerogels as Platforms for Chemical Sensors. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_27

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics