Skip to main content

Simulation and Modeling of Aerogels Using Atomistic and Mesoscale Methods

  • Chapter
  • First Online:
Book cover Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Molecular modeling and simulation are now widely used in many areas of materials science. In this chapter, we consider the application of these techniques to developing a better understanding of the structure and properties of aerogels. Both atomistic simulations and “coarse-grained” models are reviewed, and the challenges and possible solutions facing this field are also discussed. We focus on silica aerogels, as the great majority of simulation work in this area has been directed at understanding these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147&148: 356–362.

    Article  Google Scholar 

  2. Fricke J, Emmerling A (1998) Aerogels - recent progress in production techniques and novel applications. J Sol-Gel Sci Tech 13: 299–303.

    Article  CAS  Google Scholar 

  3. Gesser HD, Goswami PC (1989) Aerogels and related porous materials. Chem Rev 89: 765–788.

    Article  CAS  Google Scholar 

  4. Nicolaon GA, Teichner SJ (1968) Préparation des aérogels de silice à partir d’orthosilicate de méthyle en milieu alcoolique et leurs propriétés. Bull Soc Chim France 5: 1906.

    Google Scholar 

  5. Scherer GW (1998) Characterization of aerogels. Adv Coll Int Sci 76-77: 321–339.

    Article  Google Scholar 

  6. Himmel B, Burger H, Gerber T, Olbertz A (1995) Structural characterization of SiO2 aerogels. J Non-Cryst Solids 185: 56–66.

    Article  CAS  Google Scholar 

  7. Duffours L, Woignier T, Phalippou J (1995) Plastic behaviour of aerogels under isostatic pressure. J Non-Cryst Solids 186: 321–327.

    Article  CAS  Google Scholar 

  8. Scherer GW, Smith DM, Qiu X, Anderson JM (1995) Compression of aerogels. J Non-Cryst Solids 186: 316–320.

    Article  CAS  Google Scholar 

  9. Woignier T, Duffours L, Alaoui A, Faivre A, Calas-Etienne S, Phalippou J (2003) Mechanical behaviour of highly porous glasses. J Non-Cryst Solids 316: 160–166.

    Article  CAS  Google Scholar 

  10. Parr RG, Yang W (1989) Density-Functional Theory of Atoms and Molecules. Oxford Univ Press, New York.

    Google Scholar 

  11. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge U Press, Cambridge, UK.

    Book  Google Scholar 

  12. Szabo A, Ostlund NS (1996) Modern Quantum Chemistry. Dover.

    Google Scholar 

  13. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. Clarendon Press, Oxford.

    Google Scholar 

  14. Frenkel D, Smit B (1996) Understanding Molecular Simulation. Acad Press, San Diego.

    Google Scholar 

  15. Schlick T (2002) Molecular modeling and simulation: an interdisciplinary guide. Springer-Verlag, New York.

    Google Scholar 

  16. Cramer CJ (2002) Essentials of Computational Chemistry: Theories and Models. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  17. Levitz P (1998) Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport. Adv Coll Int Sci 76–77: 71–106.

    Article  Google Scholar 

  18. Torquato S (2001) Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer-Verlag, New York.

    Google Scholar 

  19. Yeong CLY, Torquato S (1998) Reconstructing random media. Phys Rev E 57: 495–506.

    Article  CAS  Google Scholar 

  20. Quintanilla J, Reidy RF, Gorman BP, Mueller DW (2003) Gaussian random field models of aerogels. J Appl Phys 93: 4584–4589.

    Article  CAS  Google Scholar 

  21. Eschricht N, Hoinkis E, Mädler F, Schubert-Bischoff P, Röhl-Kuhn B (2005) Knowledge-based reconstruction of random porous media. J Colloid Int Sci 291: 201–213.

    Article  CAS  Google Scholar 

  22. Steriotis T, Kikkinides E, Kainourgiakis M, Stubos A, Ramsay JDF (2004) Monitoring adsorption by small angle neutron scattering in tandem with digital reconstruction-simulation techniques. Colloids and Surfaces A: Physicochem Eng Aspects 241: 231–237.

    Article  CAS  Google Scholar 

  23. Mikeš J, Dušek K (1982) Simulation of polymer network formation by the Monte Carlo method. Macromolecules 15: 93–33.

    Article  Google Scholar 

  24. Kasehagen LJ, Rankin SE, McCormick AV, Macosko CW (1997) Modeling of first shell substitution effects and preferred cyclization in sol-gel polymerization. Macromolecules 30: 3921–3939.

    Article  CAS  Google Scholar 

  25. Rankin SE, Kasehagen LJ, McCormick AV, Macosko CW (2000) Dynamic Monte Carlo simulation of gelation with extensive cyclization. Macromolecules 33: 7639–7648.

    Article  CAS  Google Scholar 

  26. Šefčík J, Rankin SE (2003) Monte Carlo simulations of size and structure of gel precursors in silica polycondensation. J Phys Chem B 107: 52–60.

    Article  Google Scholar 

  27. Pereira JCG, Catlow CRA, Price GD (1998) Silica condensation reaction: an ab initio study. Chem Commun 13: 1387–1388.

    Article  Google Scholar 

  28. Lasaga AC, Gibbs GV (1990) Ab-initio quantum mechanical calculations of water-rock interactions: adsorption and hydrolysis reactions. Am J Science 290: 263–295.

    Article  Google Scholar 

  29. Okumoto S, Fujita N, Yamabe S (1998) Theoretical study of hydrolysis and condensation of silicon alkoxides. J Phys Chem A 102: 3991–3998.

    Article  CAS  Google Scholar 

  30. Mora-Fonz MJ, Catlow CRA, Lewis DW (2007) Modeling aqueous silica chemistry in alkali media. J Phys Chem C 111: 18,155–18,158.

    Google Scholar 

  31. Schaffer CL, Thomson KT (2008) Density functional theory investigation into structure and reactivity of prenucleation silica species. J Phys Chem C 112: 12,653–12,662.

    Google Scholar 

  32. Trinh TT, Jansen APJ, van Santen RA, Meijer EJ (2009) The role of water in silicate oligomerization reaction. Phys Chem Chem Phys 11: 5092–5099.

    Article  CAS  Google Scholar 

  33. Trinh TT, Jansen APJ, van Santen RA, Meijer EJ (2009) Role of water in silica oligomerization. J Phys Chem C 113: 2647–2652.

    Article  CAS  Google Scholar 

  34. Trinh TT, Jansen APJ, van Santen RA, VandeVondele J, Meijer EJ (2009) Effect of counter ions on the silica oligomerization reaction. ChemPhysChem 10: 1775–1782.

    Article  CAS  Google Scholar 

  35. Lasaga AC, Gibbs GV (1987) Applications of quantum mechanical potential surfaces to mineral physics calculations. Phys Chem Minerals 14: 107–117.

    Article  CAS  Google Scholar 

  36. O’Keeffe M, Domenges B, Gibbs GV (1985) Ab initio molecular orbital calculations on phosphates: Comparison with silicates. J Phys Chem 89: 2304–2309.

    Article  Google Scholar 

  37. Pereira JCG, Catlow CRA, Price GD (1999) Ab initio studies of silica-based clusters. part I. Energies and conformations of simple clusters. J Phys Chem A 103: 3252–3267.

    Article  CAS  Google Scholar 

  38. Pereira JCG, Catlow CRA, Price GD (1999) Ab initio studies of silica-based clusters. part II. Structures and energies of complex clusters. J Phys Chem A 103: 3268–3284.

    Article  CAS  Google Scholar 

  39. Sauer J (1989) Molecular models in ab initio studies of solids and surfaces: From ionic crystals and semiconductors to catalysts. Chem Rev 89: 199–255.

    Article  CAS  Google Scholar 

  40. Pereira JCG, Catlow CRA, Price GD (2001) Molecular dynamics simulation of liquid H2O, MeOH, EtOH, Si(OMe)4, and Si(OEt)4, as a function of temperature and pressure. J Phys Chem A 105: 1909–1925.

    Article  CAS  Google Scholar 

  41. Pereira JCG, Catlow CRA, Price GD (2002) Molecular dynamics simulation of methanolic and ethanolic silica-based sol-gel solutions at ambient temperature and pressure. J Phys Chem A 106: 130–148.

    Article  CAS  Google Scholar 

  42. Garofalini SH, Melman H (1986) Applications of molecular dynamics simulations to sol-gel processing. In: CJ Brinker, DE Clark, DR Ulrich (eds) Better Ceramics Through Chemistry II 497–505. Materials Research Society, Pittsburgh.

    Google Scholar 

  43. Stillinger FH, Rahman A (1978) Revised central force potentials for water. J Chem Phys 68: 666–670.

    Article  CAS  Google Scholar 

  44. Brinker CJ, Scherer GW (1990) Sol-Gel Science. Acad Press, San Diego.

    Google Scholar 

  45. Feuston BP, Garofalini SH (1990) Oligomerization in silica sols. J Phys Chem 94: 5351–5356.

    Article  CAS  Google Scholar 

  46. Garofalini SH, Martin G (1994) Molecular simulations of the polymerization of silicic acid molecules and network formation. J Phys Chem 98: 1311–1316.

    Article  CAS  Google Scholar 

  47. Kinrade SD, Swaddle TW (1988) 29Si NMR studies of aqueous silicate solutions. 1. Chemical-shifts and equilibria. Inorg Chem 27: 4253–4259.

    Article  CAS  Google Scholar 

  48. Martin GE, Garofalini SH (1994) Sol-gel polymerization: analysis of molecular mechanisms and the effect of hydrogen. J Non-Cryst Solids 171: 68–79.

    Article  CAS  Google Scholar 

  49. Rao NZ, Gelb LD (2004) Molecular dynamics simulations of the polymerization of aqueous silicic acid and analysis of the effects of concentration on silica polymorph distributions, growth mechanisms, and reaction kinetics. J Phys Chem B 108: 12,418–12,428.

    Google Scholar 

  50. Bhattacharya S, Kieffer J (2005) Fractal dimensions of silica gels generated using reactive molecular dynamics simulations. J Chem Phys 122: 094715.

    Article  Google Scholar 

  51. Bhattacharya S, Kieffer J (2008) Molecular dynamics simulation study of growth regimes during polycondensation of silicic acid: from silica nanoparticles to porous gels. J Phys Chem C 112: 1764–1771.

    Article  CAS  Google Scholar 

  52. Kieffer J, Angell CA (1988) Generation of fractal structures by negative pressure rupturing of {SiO2} glass. J Non-Cryst Solids 106: 336–342.

    Article  CAS  Google Scholar 

  53. Nakano A, Bi L, Kalia RK, Vashishta P (1994) Molecular-dynamics study of the structural correlation of porous silica with use of a parallel computer. Phys Rev B 49: 9441–9452.

    Article  Google Scholar 

  54. Nakano A, Lingsong B, Kalia RK, Vashishta P (1993) Structural correlations in porous silica: Molecular dynamics simulation on a parallel computer. Phys Rev Lett 71: 85–88.

    Article  CAS  Google Scholar 

  55. Pohl PI, Faulon JL, Smith DM (1995) Molecular dynamics computer simulations of silica aerogels. J Non-Cryst Solids 186: 349–355.

    Article  CAS  Google Scholar 

  56. Meakin P (1988) Models for colloidal aggregation. Ann Rev Phys Chem 39: 237–267.

    Article  CAS  Google Scholar 

  57. Meakin P (1999) A historical introduction to computer models for fractal aggregates. J Sol-Gel Sci Tech 15: 97–117.

    Article  CAS  Google Scholar 

  58. Poon WCK, Haw MD (1997) Mesoscopic structure formation in colloidal aggregation and gelation. Adv Coll Int Sci 73: 71–126.

    Article  CAS  Google Scholar 

  59. Meakin P (1983) Formation of fractal clusters and networks by irreversible diffusion-limited aggregation. Phys Rev Lett 51: 1119–1122.

    Article  Google Scholar 

  60. Witten TA, Jr, Sander LM (1981) Diffusion-limited aggregation, a kinetic critical phenomenon. Phys Rev Lett 47: 1400–1403.

    Article  CAS  Google Scholar 

  61. Hasmy A, Anglaret E, Foret M, Pelous J, Jullien R (1994) Small-angle neutron-scattering investigation of long-range correlations in silica aerogels - simulations and experiments. Phys Rev B 50: 6006–6016.

    Article  CAS  Google Scholar 

  62. Hasmy A, Foret M, Pelous J, Jullien R (1993) Small-angle neutron-scattering investigation of short-range correlations in fractal aerogels - simulations and experiments. Phys Rev B 48: 9345–9353.

    Article  CAS  Google Scholar 

  63. Hasmy A, Foret M, Anglaret E, Pelous J, Jullien R (1995) Small-angle neutron scattering of aerogels: simulations and experiments. J Non-Cryst Solids 186: 118–130.

    Article  CAS  Google Scholar 

  64. Jullien R, Hasmy A, Anglaret É (1997) Effect of cluster deformations in the DLCA modeling of the sol-gel process. J Sol-Gel Sci Tech 8: 819–824.

    CAS  Google Scholar 

  65. Olivi-Tran N, Lenormand P, Lecomte A, Dauger A (2005) Molecular dynamics approach of sol-gel transition: Comparison with experiments. Physica A 354: 10–18.

    Article  CAS  Google Scholar 

  66. Pierce F, Sorensen CM, Chakrabarti A (2006) Computer simulation of diffusion-limited cluster-cluster aggregation with an epstein drag force. Phys Rev E 74: 021411.

    Article  CAS  Google Scholar 

  67. Ma HS, Prévost JH, Jullien R, Scherer GW (2001) Computer simulation of mechanical structure-property relationship of aerogels. J Non-Cryst Solids 285: 216–221.

    Article  CAS  Google Scholar 

  68. Lu H, Fu B, Daphalapurkar N, Hanan J, Soritrou-Leventis C, Leventis N (2008) Simulation of the evolution of the nanostructure of crosslinked silica-aerogels under compression. Polymer Preprints 49: 564–565.

    CAS  Google Scholar 

  69. Bijsterbosch BH, Bos MTA, Dickinson E, van Opheusden JHJ, Walstra P (1996) Brownian dynamics simulation of particle gel formation: From argon to yoghurt. Faraday Discuss 101: 51–64.

    Article  Google Scholar 

  70. Whittle M, Dickinson E (1997) Brownian dynamics simulation of gelation in soft sphere systems with irreversible bond formation. Mol Phys 90: 739–757.

    Article  CAS  Google Scholar 

  71. Whittle M, Dickinson E (1997) Stress overshoot in a model particle gel. J Chem Phys 107: 10,191–10,200.

    Google Scholar 

  72. d’Arjuzon RJM, Frith W, Melrose JR (2003) Brownian dynamics simulations of aging colloidal gels. Phys Rev E 67: 061404.

    Article  Google Scholar 

  73. Rzepiela AA, van Opheusden JHJ, van Vliet T (2001) Brownian dynamics simulation of aggregation kinetics of hard spheres with flexible bonds. J Colloid Int Sci 244: 43–50.

    Article  CAS  Google Scholar 

  74. Rzepiela AA, van Opheusden JHJ, van Vliet T (2002) Large shear deformation of particle gels studied by Brownian Dynamics simulations. Comp Phys Comm 147: 303–306.

    Article  Google Scholar 

  75. Rzepiela AA, van Opheusden JHJ, van Vliet T (2004) Large shear deformation of particle gels studied by Brownian Dynamics simulations. J Rheol 48: 863–880.

    Article  CAS  Google Scholar 

  76. Gelb LD (2007) Simulating silica aerogels with a coarse-grained flexible model and Langevin dynamics. J Phys Chem C 111: 15,792–15,802.

    Google Scholar 

  77. Leventis N (2007) Three-dimensional core-shell superstructures: Mechanically strong aerogels. Acc Chem Res 40: 874–884.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev D. Gelb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gelb, L.D. (2011). Simulation and Modeling of Aerogels Using Atomistic and Mesoscale Methods. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_24

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics