Skip to main content

Anisotropic Aerogels by Photolithography

  • Chapter
  • First Online:

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

A general method is presented that allows fabrication of sol–gel materials with anisotropic physical properties. The gelation solvent is exchanged with a suitable solution of precursors and suitable chemical reactions are triggered in irradiated regions of the monoliths. The physical properties of the exposed regions can be varied almost at leisure by changing the precursors. For example, metal and sulfide nanoparticles can be formed inside the pores of the matrices and these nanoparticles change optical absorption, emission and index of refraction of the exposed regions. Polymers can be attached to the walls of the matrix pores, and this allows modulation of mechanical strength, hydrophobicity and optical properties. The character of the patterns can be adapted to the specific applications by varying the precursor solution. Single-photon reactions are used to generate patterns that start on the surface of the monoliths and extend within the bulk of the monoliths. Precursors that react when exposed to ionizing radiation are employed to create high aspect ratio patterns, and precursors that are dissociated by multiphoton processes are used to produce three-dimensional architectures. Physical properties and possible applications of the monoliths are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. For a recent review on the synthesis and applications of aerogels, see: Pierre A C, Pajonk G M, (2002) Chemistry of Aerogels and Their Applications. Chem. Rev. 21: 4243. For space applications, see Jones S M (2006) Aerogel: Space exploration applications. J Sol-Gel Sci Technol 40: 351

    Google Scholar 

  2. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson G H, Chmelka B, Stucky G D, (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279: 548

    Article  CAS  Google Scholar 

  3. Amatani T, Nakanishi K, Hirao K, Kodaira T, (2005) Monolithic Periodic Mesoporous Silica with Well-Defined Macropores. Chem Mater 17: 114

    Article  Google Scholar 

  4. Heckman B, Martin L, Bertino M F, Leventis N, Tokuhiro A T, (2008) Sol-gel materials for high capacity, rapid removal of metal contaminants. Separ Sci 43: 1474

    Article  CAS  Google Scholar 

  5. Brandhuber D, Peterlik H, Husing N, (2005) Simultaneous drying and chemical modification of hierarchically organized silica monoliths with organofunctional silanes. J Mater Chem 15: 3896

    Article  CAS  Google Scholar 

  6. Langlet M, Permpoon S, Riassetto D, Berthome G, Pernot E, Joud J C, (2006) Photocatalytic activity and photo-induced superhydrophilicity of sol–gel derived TiO2 films. J Photoch Photobio.A 181: 203

    Google Scholar 

  7. Bertino M F, Smarsly B, Stocco A, and Stark A, (2009) Densification of nanoparticles with visible light, Adv Funct Mater 19: 1–6

    Article  Google Scholar 

  8. Leventis N, (2007) Three-dimensional core-shell superstructures: Mechanically strong aerogels. Acc Chem Res 40: 874–884

    Article  CAS  Google Scholar 

  9. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-M, (2002) Nanoenginering Strong Silica Aerogels. Nano Lett 2: 957–960

    Article  CAS  Google Scholar 

  10. Wu P-W, Cheng W, Martini I B, Dunn B, Schwartz B J, Yablonovitch E, (2000) Two-Photon Photographic Production of Three-Dimensional Metallic Structures within Dielectric Matrix Adv Mater 12: 1438

    Google Scholar 

  11. Bertino M F, Gadipalli R R, Story J G, Williams C G, Zhang Z, Sotiriou-Leventis C, Tokuhiro A T, Guha S, Leventis N, (2004) Laser Writing of Semiconductor Nanoparticles and Quantum Dots. Appl Phys Lett 85: 6007

    Article  CAS  Google Scholar 

  12. Bertino M F, Gadipalli R R, Martin L A, Rich L E, Yamilov A, Heckman B R, Leventis N, Guha S, Katsoudas J, Divan R, Mancini D C, (2007) Quantum dots by ultraviolet and X-ray lithography. Nanotechnology 18: 315603

    Article  Google Scholar 

  13. Muir A C, Mailis S, Eason R W, (2007) Ultraviolet laser-induced submicron spatially resolved superhydrophilicity on single crystal lithium niobate surfaces. J Appl Phys 101: 104916

    Article  Google Scholar 

  14. Gadipalli R R, Martin L A, Heckman B, Story J G, Bertino M F, Leventis N, Fraundorf P, Guha S, (2006) Patterning porous matrices and planar substrates with quantum dots. J Sol-Gel Sci Technol 39: 299

    Article  Google Scholar 

  15. Gadipalli R R, Martin L A, Heckman B, Story J G, Bertino M F, Leventis N, Fraundorf P, Guha S, (2006) Infra Red Quantum Dot Photolithography. J. Sol-Gel Sci Technol 40: 101

    Article  CAS  Google Scholar 

  16. Bertino M F, Hund J F, Sosa J, Zhang G, Sotiriou-Leventis C, Leventis, N, Tokuhiro A T, Terry J, (2004) Room Temperature Synthesis of Noble Metal Clusters in the Mesopores of Mechanically Strong Silica-Polymer Aerogel Composites. J Sol-Gel Sci Tech 30: 43–48

    Article  CAS  Google Scholar 

  17. Hund J F, Bertino M F, Zhang G, Sotiriou-Leventis C, Leventis N, Tokuhiro A T, Farmer J, (2003) Formation and Entrapment of Noble Metal Clusters in Silica Aerogel Monoliths by γ-Radiolysis. J Phys Chem B107: 465

    Google Scholar 

  18. C Wingfield, A Baski, M F Bertino, N Leventis, D P Mohite, and H Lu, (2009) Fabrication of sol-gel materials with anisotropic physical properties. Chem Mater.21: 2108–2114

    Article  CAS  Google Scholar 

  19. Hund J F, Bertino M F, Zhang G, Sotiriou-Leventis C, Leventis N, (2004) High resolution patterning of silica aerogels. J Non-Cryst Solids 350: 9

    Article  CAS  Google Scholar 

  20. Kitaev G A, Uritskaya A A, and Mokrushin S G (1965) Kinetics of Cadmium Sulfide Precipitation from Aqueous Thiourea Solutions. Zhurnal Fizicheskoi Khimii 38: 2065

    Google Scholar 

  21. Kitaev G A, Uritskaya A A, and Mokrushin S G, (1965) Conditions for the chemical deposition of thin films of cadmium sulphide on a solid surface. Russ J Phys Ch 39: 1101–1102

    Google Scholar 

  22. De Brabander H F and Van Poucke L C, (1974) Polymeric complexes between Cadmium (II) and 2-mercaptoethanol and 3-mercapto 1, 2 propanediol. J Coord Chem 3: 301; Said FF and Tuck, DG (1982). Inorg Chim Acta 59: 1

    Google Scholar 

  23. Hayes D, Mitit O I, Nenadovit M T, Swayambunathan V, and Meisel D, (1989) Radiolytic Production and Properties of Ultrasmall CdS Particles. J Phys Chem 93: 4603

    Article  CAS  Google Scholar 

  24. Mostafavi M, Liu Y P, Pernot P, and Belloni J, (2000) Dose rate effect on size of CdS clusters induced by irradiation. Radiat Phys Chem 59: 49

    Article  CAS  Google Scholar 

  25. Turk T, Resch U, Fox M A, and Vogler A, (1992) Spectroscopic Studies of Zinc Benzenethiolate Complexes: Electron Transfer to Methyl Viologen. Inorg Chem. 31: 1854

    Article  Google Scholar 

  26. Turk T, Resch U, Fox M A, and Vogler A, (1992) Cadmium Benzenethiolate Clusters of Various Size: Molecular Models for Metal Chalcogenide Semiconductors. J Phys Chem 96: 3818

    Article  Google Scholar 

  27. Fischer Ch-H and Henglein A, (1989) Photochemistry of Colloidal Semiconductors. 31. Preparation and Photolysis of CdS Sols in Organic Solvents. J Phys Chem 93: 5578

    Article  CAS  Google Scholar 

  28. Knight A R, The Chemistry of the Thiol Group, Part 1; Patai, S, Ed. John Wiley & Sons Ltd.: London, 1974; Chapter 10

    Google Scholar 

  29. Mirkovic T, Hines M A, Nair P S, and Scholes G D, (2005) Single-Source Precursor Route for the Synthesis of EuS Nanocrystals. Chem Mater 17: 3451

    Article  CAS  Google Scholar 

  30. Hasegawa Y, Afzaal M, O’Brien P, Wada Y, and Yanagida S, (2005) A novel method for synthesizing EuS nanocrystals from a single-source precursor under white LED irradiation. Chem Commun 242–243

    Google Scholar 

  31. Zhao W-B, Zhu J-J, and Chen H-Y, (2003) Photochemical preparation of rectangular PbSe and CdSe nanoparticles. J Cryst Growth 252:587

    Article  CAS  Google Scholar 

  32. Lin Y-W, Hsieh M-M, Liu C-P, and Chang H-T, (2005) Photoassisted Synthesis of CdSe and Core-Shell CdSe/CdS Quantum Dots. Langmuir 21 728

    Google Scholar 

  33. Henglein A, (1993) Chemical and Optical Properties of Small Metal Particles in Aqueous Solution Israel J Chem. 33: 77

    CAS  Google Scholar 

  34. Bertino M F, Katsoudas J, Leventis N, in preparation

    Google Scholar 

  35. Ilhan U F, Fabrizio E F, McCorkle L, Scheiman D, Dass A, Palzer A, Meador M A B, and Leventis N, (2006) Hydrophobic Monolithic Aerogels by Nanocasting Polystyrene on Amine-Modified Silica. J Mater Chem 16: 3046–3054

    Article  CAS  Google Scholar 

  36. Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N, (2008) Crosslinking 3D Assemblies of Nanoparticles into Mechanically Strong Aerogels by Surface-Initiated Free Radical Polymerization. Chem Mater 20:5035–5046

    Article  CAS  Google Scholar 

  37. Bertino M F, Gadipalli R R, Leventis N, in preparation

    Google Scholar 

  38. Glezer E N, Mazur E, (1997) Ultrafast-laser driven micro-explosions in transparent materials. Appl Phys Lett 71: 882

    Article  CAS  Google Scholar 

  39. Cheng G, Wang Y, White J D, Liu Q, Zhao W, Chen G, (2003) Demonstration of high-density three-dimensional storage in fused silica by femtosecond laser pulses. J Appl Phys 94: 1304

    Article  CAS  Google Scholar 

  40. Kanehira S, Si J, Qiu J, Fujita K, Hirao K, (2005) Periodic Nanovoid Structures via Femtosecond Laser Irradiation. Nano Letters 5: 1591

    Article  CAS  Google Scholar 

  41. Wingfield C, Bertino M F, Leventis N, in preparation

    Google Scholar 

  42. Fouassier J P, Allonas X, Burget D, (2003) Photopolymerization of thiol–allyl ether and thiol–acrylate coatings with visible light photosensitive systems. Progress in Organic Coatings 47:16–36

    Article  CAS  Google Scholar 

  43. Cramer N B, Bowman C N, (2001) Toward an Enhanced Understanding and Implementation of Photopolymerization Reactions. J Polym Sci A 39: 3311–3319

    Article  CAS  Google Scholar 

  44. Matsumoto H, Sakata T, Mori H, and Yoneyama H, (1996) Preparation of Monodisperse CdS Nanocrystals by Size Selective Photocorrosion. J Phys Chem 100: 13781

    Article  CAS  Google Scholar 

  45. Torimoto T, Kontani H, Shibutani Y, Kuwabata S, Sakata T, Mori H, and Yoneyama H, (2001) Characterization of Ultrasmall CdS Nanoparticles Prepared by the Size-Selective Photoetching Technique. J Phys Chem B 105: 6838

    Article  CAS  Google Scholar 

  46. Wang Y, Tang Z, Correa-Duarte M A, Pastoriza-Santos I, Giersig M, Kotov N A, and Liz-Marzan L M, (2004) Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J Phys Chem B 108: 15461

    Article  CAS  Google Scholar 

  47. Rogach A L, Kornowski A, Gao M, Eychmüller A, and Weller H (1999) Thiol-Capping of CdTe Nanocrystals: An Alternative to Organometallic Synthetic Routes. J Phys Chem B 103: 3065

    Google Scholar 

  48. Sheng W, Kim S, Lee J, Kim S-W, Jensen K, and Bawendi M G, (2006). Langmuir 22: 3782

    Google Scholar 

  49. For a recent review, see George S, Sebastian M T, (2009) Three-phase polymer-ceramic-metal composite for embedded capacitor applications. Composites Science and Technology 69:1298–1302

    Google Scholar 

  50. Chan J W, Huser T R, Risbud S H, Hayden J S, Krol D M, (2003) Waveguide fabrication in phosphate glasses using femtosecond laser pulses. Appl Phys Lett 82: 2371

    Article  CAS  Google Scholar 

  51. http://www2.dupont.com/Nomex/en_US/uses_apps/index.html, last accessed February 15, 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Bertino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bertino, M. (2011). Anisotropic Aerogels by Photolithography. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics