Chalcogenide Aerogels

Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


A new class of aerogels based exclusively on metal chalcogenide frameworks has recently been developed, opening up a range of exciting properties and applications not encompassed by their oxide brethren. The optical semiconducting properties are tunable over a wide range from the UV through to the IR depending on the chemical composition, and gels prepared from nanoparticle assembly exhibit the characteristic quantum confinement effects of their nanoparticle building blocks. The soft Lewis basic characteristics of the framework and the presence of an interconnected pore-network result in unique sorption properties that may be suitable for environmental remediation or gas-separation. This chapter presents a detailed description of the advances in chalcogenide aerogels since they were initially reported in 2004, focusing on the different methods of synthesis developed and the consequent physicochemical properties.


Quantum Confinement Effect Pair Distribution Function CdSe Nanoparticles Aerogel Composite Metal Chalcogenide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bag S, Arachchige IU, Kanatzidis MG (2008) Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem 18: 3628–3632CrossRefGoogle Scholar
  2. 2.
    Arachchige IU, Brock SL (2007) Sol-gel methods for the assembly of metal chalcogenide quantum dots. Acc Chem Res 40: 801–809CrossRefGoogle Scholar
  3. 3.
    Brock SL, Arachchige IU, Kalebaila KK (2006) Metal chalcogenide gels, xerogels and aerogels. Comm Inorg Chem 27: 103–126CrossRefGoogle Scholar
  4. 4.
    Sriram MA, Kumta PN (1998) The thio-sol-gel synthesis of titanium disulfide and niobium disulfide. J Mater Chem 8: 2453–2463CrossRefGoogle Scholar
  5. 5.
    Carmalt CJ, Dinnage CW, Parkin IP (2000) Thio sol-gel synthesis of titanium disulfide from titanium thiolates. J Mater Chem 10: 2823–2826CrossRefGoogle Scholar
  6. 6.
    Carmalt CJ, Dinnage CW, Parkin IP, et al. (2002) Synthesis of a homoleptic niobium(v) thiolate complex and the preparation of niobium sulfide via thio “sol–gel” and vapor phase thin-film experiments. Inorg Chem 41: 3668–3672CrossRefGoogle Scholar
  7. 7.
    Purdy AP, Berry AD, George CF (1997) Synthesis, structure, and thiolysis reactions of pyridine soluble alkaline earth and yttrium thiolates. Inorg Chem 36: 3370–3375CrossRefGoogle Scholar
  8. 8.
    Dunleavy M, Allen GC, Paul M (1992) Characterization of lanthanum sulphides. Adv Mater 4: 424–427CrossRefGoogle Scholar
  9. 9.
    Stanić V, Pierre AC, Etsell TH, et al. (1997) Preparation of tungsten sulfides by sol-gel processing. J Non-Cryst Solids 220: 58–62CrossRefGoogle Scholar
  10. 10.
    Stanić V, Etsell TH, Pierre AC, et al. (1997) Sol-gel processing of ZnS. Mater Lett 31: 35–38CrossRefGoogle Scholar
  11. 11.
    Stanić V, Pierre AC, Etsell TH, et al. (2000) Influence of reaction parameters on the microstructure of the germanium disulfide gel. J Am Ceram Soc 83: 1790–1796CrossRefGoogle Scholar
  12. 12.
    Stanić V, Etsell TH, Pierre AC, et al. (1997) Metal sulfide preparation from a sol-gel product and sulfur. J Mater Chem 7: 105–107CrossRefGoogle Scholar
  13. 13.
    Stanić V, Pierre AC, Etsell TH, et al. (2001) Chemical kinetics study of the sol–gel processing of GeS2. J Phys Chem A 105: 6136–6143CrossRefGoogle Scholar
  14. 14.
    Kalebaila KK, Georgiev DG, Brock SL (2006) Synthesis and characterization of germanium sulfide aerogels. J Non-Cryst Solids 352: 232–240CrossRefGoogle Scholar
  15. 15.
    Bag S, Trikalitis PN, Chupas PJ, et al. (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317: 490–493CrossRefGoogle Scholar
  16. 16.
    Trikalitis PN, Rangan KK, Bakas T, et al. (2001) Varied pore organization in mesostructured semiconductors based on the [SnSe4]4− anion. Nature 410: 671–675CrossRefGoogle Scholar
  17. 17.
    Maclachlan MJ, Coombs N, Ozin GA (1999) Non-aqueous supramolecular assembly of mesostructured metal germanium sulfides from (Ge4S10)4− clusters. Nature 397: 681–684CrossRefGoogle Scholar
  18. 18.
    Korlann SD, Riley AE, Kirsch BL, et al. (2005) Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. J Am Chem Soc 127: 12516–12527CrossRefGoogle Scholar
  19. 19.
    Bag S, Gaudette AF, Bussell ME, et al. (2009) Spongy chalcogels of non-platinum metals acts as effective hydrodesulfurization catalysts. Nat Chem 1: 217–224CrossRefGoogle Scholar
  20. 20.
    Armatas GS, Kanatzidis MG (2009) Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. Nat Mater 8: 217–222CrossRefGoogle Scholar
  21. 21.
    Gacoin T, Malier L, Boilot J-P (1997) New transparent chalcogenide materials using a sol-gel process. Chem Mater 9: 1502–1504CrossRefGoogle Scholar
  22. 22.
    Gacoin T, Malier L, Boilot J-P (1997) Sol-gel transition in cds colloids. J Mater Chem 7: 859–860CrossRefGoogle Scholar
  23. 23.
    Gacoin T, Lahlil K, Larregaray P, et al. (2001) Transformation of CdS colloids: Sols, gels, and precipitates. J Phys Chem B 105: 10228–10235CrossRefGoogle Scholar
  24. 24.
    Capoen B, Gacoin T, Nedelec JM, et al. (2001) Spectroscopic investigations of CdS nanoparticles in sol-gel derived polymeric thin films and bulk silica matrices. J Mater Sci 36: 2565–2570CrossRefGoogle Scholar
  25. 25.
    Malier L, Boilot J-P, Gacoin T (1998) Sulfide gels and films: Products of non-oxide gelation. J Sol-Gel Sci Tech 13: 61–64CrossRefGoogle Scholar
  26. 26.
    Mohanan JL, Brock SL (2004) A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties. J Non-Cryst Solids 350: 1–8CrossRefGoogle Scholar
  27. 27.
    Mohanan JL, Arachchige IU, Brock SL (2005) Porous semiconductor chalcogenide aerogels. Science 307: 397–400Google Scholar
  28. 28.
    Mohanan JL, Brock SL (2006) CdS aerogels: Effect of concentration and primary particle size on surface area and opto-electronic properties. J Sol-Gel Sci Tech 40: 341–350CrossRefGoogle Scholar
  29. 29.
    Arachchige IU, Mohanan JL, Brock SL (2005) Sol-gel processing of semiconducting metal chalcogenide xerogels: Influence of dimensionality on quantum confinement effects in a nanoparticle network. Chem Mater 17: 6644–6650CrossRefGoogle Scholar
  30. 30.
    Yu H, Liu Y, Brock SL (2009) Tuning the optical band gap of quantum dot assemblies by varying network density. ACS Nano 3: 2000–2006CrossRefGoogle Scholar
  31. 31.
    Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: New materials in electrochemistry. J Mater Chem 11: 963–980CrossRefGoogle Scholar
  32. 32.
    Peng ZAP, Peng X (2001) Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123: 183–184CrossRefGoogle Scholar
  33. 33.
    Arachchige IU, Brock SL (2006) Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J Am Chem Soc 128: 7964–7971CrossRefGoogle Scholar
  34. 34.
    Trindale TO, O'Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem Mater 13: 3843–3858CrossRefGoogle Scholar
  35. 35.
    Arachchige IU, Brock SL (2007) Highly luminescent quantum-dot monoliths. J Am Chem Soc 129: 1840–1841CrossRefGoogle Scholar
  36. 36.
    Yu H, Bellair R, Kannan RM, et al. (2008) Engineering strength, porosity, and emission intensity of nanostructured CdSe networks by altering the building-block shape. J Am Chem Soc 130: 5054–5055CrossRefGoogle Scholar
  37. 37.
    Yu H, Brock SL (2008) Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels). ACS Nano 2: 1563–1570CrossRefGoogle Scholar
  38. 38.
    Peng ZAP, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123: 1389–1395CrossRefGoogle Scholar
  39. 39.
    Kanaras AG, Soennichsen C, Liu H, et al. (2005) Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett 5: 2164–2167CrossRefGoogle Scholar
  40. 40.
    Yao Q, Arachchige IU, Brock SL (2009) Expanding the repertoire of chalcogenide nanocrystal networks: Ag2Se gels and aerogels by cation exchange reactions. J Am Chem Soc 131: 2800–2801CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of ChemistryWayne State UniversityDetroitUSA

Personalised recommendations