Skip to main content

Chalcogenide Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

A new class of aerogels based exclusively on metal chalcogenide frameworks has recently been developed, opening up a range of exciting properties and applications not encompassed by their oxide brethren. The optical semiconducting properties are tunable over a wide range from the UV through to the IR depending on the chemical composition, and gels prepared from nanoparticle assembly exhibit the characteristic quantum confinement effects of their nanoparticle building blocks. The soft Lewis basic characteristics of the framework and the presence of an interconnected pore-network result in unique sorption properties that may be suitable for environmental remediation or gas-separation. This chapter presents a detailed description of the advances in chalcogenide aerogels since they were initially reported in 2004, focusing on the different methods of synthesis developed and the consequent physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bag S, Arachchige IU, Kanatzidis MG (2008) Aerogels from metal chalcogenides and their emerging unique properties. J Mater Chem 18: 3628–3632

    Article  CAS  Google Scholar 

  2. Arachchige IU, Brock SL (2007) Sol-gel methods for the assembly of metal chalcogenide quantum dots. Acc Chem Res 40: 801–809

    Article  CAS  Google Scholar 

  3. Brock SL, Arachchige IU, Kalebaila KK (2006) Metal chalcogenide gels, xerogels and aerogels. Comm Inorg Chem 27: 103–126

    Article  CAS  Google Scholar 

  4. Sriram MA, Kumta PN (1998) The thio-sol-gel synthesis of titanium disulfide and niobium disulfide. J Mater Chem 8: 2453–2463

    Article  CAS  Google Scholar 

  5. Carmalt CJ, Dinnage CW, Parkin IP (2000) Thio sol-gel synthesis of titanium disulfide from titanium thiolates. J Mater Chem 10: 2823–2826

    Article  CAS  Google Scholar 

  6. Carmalt CJ, Dinnage CW, Parkin IP, et al. (2002) Synthesis of a homoleptic niobium(v) thiolate complex and the preparation of niobium sulfide via thio “sol–gel” and vapor phase thin-film experiments. Inorg Chem 41: 3668–3672

    Article  CAS  Google Scholar 

  7. Purdy AP, Berry AD, George CF (1997) Synthesis, structure, and thiolysis reactions of pyridine soluble alkaline earth and yttrium thiolates. Inorg Chem 36: 3370–3375

    Article  CAS  Google Scholar 

  8. Dunleavy M, Allen GC, Paul M (1992) Characterization of lanthanum sulphides. Adv Mater 4: 424–427

    Article  Google Scholar 

  9. Stanić V, Pierre AC, Etsell TH, et al. (1997) Preparation of tungsten sulfides by sol-gel processing. J Non-Cryst Solids 220: 58–62

    Article  Google Scholar 

  10. Stanić V, Etsell TH, Pierre AC, et al. (1997) Sol-gel processing of ZnS. Mater Lett 31: 35–38

    Article  Google Scholar 

  11. Stanić V, Pierre AC, Etsell TH, et al. (2000) Influence of reaction parameters on the microstructure of the germanium disulfide gel. J Am Ceram Soc 83: 1790–1796

    Article  Google Scholar 

  12. Stanić V, Etsell TH, Pierre AC, et al. (1997) Metal sulfide preparation from a sol-gel product and sulfur. J Mater Chem 7: 105–107

    Article  Google Scholar 

  13. Stanić V, Pierre AC, Etsell TH, et al. (2001) Chemical kinetics study of the sol–gel processing of GeS2. J Phys Chem A 105: 6136–6143

    Article  Google Scholar 

  14. Kalebaila KK, Georgiev DG, Brock SL (2006) Synthesis and characterization of germanium sulfide aerogels. J Non-Cryst Solids 352: 232–240

    Article  CAS  Google Scholar 

  15. Bag S, Trikalitis PN, Chupas PJ, et al. (2007) Porous semiconducting gels and aerogels from chalcogenide clusters. Science 317: 490–493

    Article  CAS  Google Scholar 

  16. Trikalitis PN, Rangan KK, Bakas T, et al. (2001) Varied pore organization in mesostructured semiconductors based on the [SnSe4]4− anion. Nature 410: 671–675

    Article  CAS  Google Scholar 

  17. Maclachlan MJ, Coombs N, Ozin GA (1999) Non-aqueous supramolecular assembly of mesostructured metal germanium sulfides from (Ge4S10)4− clusters. Nature 397: 681–684

    Article  CAS  Google Scholar 

  18. Korlann SD, Riley AE, Kirsch BL, et al. (2005) Chemical tuning of the electronic properties in a periodic surfactant-templated nanostructured semiconductor. J Am Chem Soc 127: 12516–12527

    Article  CAS  Google Scholar 

  19. Bag S, Gaudette AF, Bussell ME, et al. (2009) Spongy chalcogels of non-platinum metals acts as effective hydrodesulfurization catalysts. Nat Chem 1: 217–224

    Article  CAS  Google Scholar 

  20. Armatas GS, Kanatzidis MG (2009) Mesoporous germanium-rich chalcogenido frameworks with highly polarizable surfaces and relevance to gas separation. Nat Mater 8: 217–222

    Article  CAS  Google Scholar 

  21. Gacoin T, Malier L, Boilot J-P (1997) New transparent chalcogenide materials using a sol-gel process. Chem Mater 9: 1502–1504

    Article  CAS  Google Scholar 

  22. Gacoin T, Malier L, Boilot J-P (1997) Sol-gel transition in cds colloids. J Mater Chem 7: 859–860

    Article  CAS  Google Scholar 

  23. Gacoin T, Lahlil K, Larregaray P, et al. (2001) Transformation of CdS colloids: Sols, gels, and precipitates. J Phys Chem B 105: 10228–10235

    Article  CAS  Google Scholar 

  24. Capoen B, Gacoin T, Nedelec JM, et al. (2001) Spectroscopic investigations of CdS nanoparticles in sol-gel derived polymeric thin films and bulk silica matrices. J Mater Sci 36: 2565–2570

    Article  CAS  Google Scholar 

  25. Malier L, Boilot J-P, Gacoin T (1998) Sulfide gels and films: Products of non-oxide gelation. J Sol-Gel Sci Tech 13: 61–64

    Article  CAS  Google Scholar 

  26. Mohanan JL, Brock SL (2004) A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties. J Non-Cryst Solids 350: 1–8

    Article  CAS  Google Scholar 

  27. Mohanan JL, Arachchige IU, Brock SL (2005) Porous semiconductor chalcogenide aerogels. Science 307: 397–400

    CAS  Google Scholar 

  28. Mohanan JL, Brock SL (2006) CdS aerogels: Effect of concentration and primary particle size on surface area and opto-electronic properties. J Sol-Gel Sci Tech 40: 341–350

    Article  CAS  Google Scholar 

  29. Arachchige IU, Mohanan JL, Brock SL (2005) Sol-gel processing of semiconducting metal chalcogenide xerogels: Influence of dimensionality on quantum confinement effects in a nanoparticle network. Chem Mater 17: 6644–6650

    Article  CAS  Google Scholar 

  30. Yu H, Liu Y, Brock SL (2009) Tuning the optical band gap of quantum dot assemblies by varying network density. ACS Nano 3: 2000–2006

    Article  CAS  Google Scholar 

  31. Rolison DR, Dunn B (2001) Electrically conductive oxide aerogels: New materials in electrochemistry. J Mater Chem 11: 963–980

    Article  CAS  Google Scholar 

  32. Peng ZAP, Peng X (2001) Formation of high-quality CdTe, CdSe and CdS nanocrystals using CdO as precursor. J Am Chem Soc 123: 183–184

    Article  CAS  Google Scholar 

  33. Arachchige IU, Brock SL (2006) Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. J Am Chem Soc 128: 7964–7971

    Article  CAS  Google Scholar 

  34. Trindale TO, O'Brien P, Pickett NL (2001) Nanocrystalline semiconductors: Synthesis, properties and perspectives. Chem Mater 13: 3843–3858

    Article  Google Scholar 

  35. Arachchige IU, Brock SL (2007) Highly luminescent quantum-dot monoliths. J Am Chem Soc 129: 1840–1841

    Article  CAS  Google Scholar 

  36. Yu H, Bellair R, Kannan RM, et al. (2008) Engineering strength, porosity, and emission intensity of nanostructured CdSe networks by altering the building-block shape. J Am Chem Soc 130: 5054–5055

    Article  CAS  Google Scholar 

  37. Yu H, Brock SL (2008) Effects of nanoparticle shape on the morphology and properties of porous CdSe assemblies (aerogels). ACS Nano 2: 1563–1570

    Article  CAS  Google Scholar 

  38. Peng ZAP, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123: 1389–1395

    Article  CAS  Google Scholar 

  39. Kanaras AG, Soennichsen C, Liu H, et al. (2005) Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett 5: 2164–2167

    Article  CAS  Google Scholar 

  40. Yao Q, Arachchige IU, Brock SL (2009) Expanding the repertoire of chalcogenide nanocrystal networks: Ag2Se gels and aerogels by cation exchange reactions. J Am Chem Soc 131: 2800–2801

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie L. Brock .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Brock, S.L., Yu, H. (2011). Chalcogenide Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_17

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics