Skip to main content

Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Aerogels are regarded as ideal candidates for the design of functional nanocomposites based on supported metal or metal oxide nanoparticles. The large specific surface area together with the open pore structure enables aerogels to effectively host finely dispersed nanoparticles up to the desired loading and to provide nanoparticle accessibility as required to supply their specific functionalities. The incorporation of nanoparticles as a way to increase the possibility of the use of aerogels as innovative functional materials and the challenges in the controlled preparation of nanocomposite aerogels is reviewed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ko I (1998) Aerogels, Kirk-Othmer Encyclopedia of Chemical Technology John Wiley & Sons, 1–3

    Google Scholar 

  2. Husing N, Schubert U (1998) Aerogels-Airy Materials: Chemistry, Structure, and Properties. Angew Chem Int Ed 37:22–45

    Article  CAS  Google Scholar 

  3. Piccaluga G, Corrias A, Ennas G, Musinu A (2000) Sol-Gel Preparation and Characterization of Metal-Silica and Metal Oxide-Silica Nanocomposites. Mater Res Found 13:1–56

    Google Scholar 

  4. Baumann TF, Satcher JH Jr, (2003) Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons. Chem Mater 15:3745–3747

    Article  CAS  Google Scholar 

  5. Baumann TF, Fox GA, Satcher JH Jr Yoshizawa N, Fu R, Dresselhaus MS (2002) Synthesis and Characterization of Copper-Doped Carbon Aerogels. Langmuir 18:7073–7076

    Article  CAS  Google Scholar 

  6. Casas LI, Roig A, Rodriguez E, Molins E, Tejada J, Sort J (2001) Silica aerogel-iron oxide nanocomposites: structural and magnetic properties. J Non-Cryst Solids 285:37–43

    Article  CAS  Google Scholar 

  7. Casula MF, Corrias A, Paschina G (2001) Iron oxide-silica aerogel and aerogel nanocomposite materials. J Non-Cryst Solids 293–295:25–31

    Article  Google Scholar 

  8. Cannas C, Casula MF, Concas G, Corrias A, Gatteschi D, Falqui A, Musinu A, Sangregorio C, Spano G (2001) Magnetic Properties of γ-Fe2O3-SiO2 Aerogel and Xerogel Nanocomposite Materials. J Mater Chem 11:3180–3187

    Article  CAS  Google Scholar 

  9. Del Monte F, Morales MP Levy D, Fernandez A, Ocana M, Roig A, Molins E, O’Grady K, Serna CJ (1997) Formation of γ-Fe2O3 isolated nanoparticles in a silica matrix. Langmuir 13:3627–3634

    Article  Google Scholar 

  10. Casas LI, Roig A, Molins E, Greneche JM, Asenjo J, Tejada J (2002) Iron oxide nanoparticles hosted in silica aerogels. Appl Phys A 74:591–597

    Article  CAS  Google Scholar 

  11. van Raap MBF, Sanchez FH, Torres CER, Casas L, Roig A, Molins E, (2005) Detailed magnetic dynamic behaviour of nanocomposite iron oxide aerogels. J Phys Condens Matter 17:6519–6531

    Article  Google Scholar 

  12. Popovici M, Gich M, Roig A, Casas L, Molins E, Savii C, Becherescu D, Sort J, Surinach S, Munoz JS, Baro MD, Nogues J (2004) Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors. Langmuir 20:1425–1429

    Article  CAS  Google Scholar 

  13. Lancok A, Zaveta K, Popovici M, Savii C, Gich M, Roig A, Molins E, Barcova K (2005) Mössbauer studies on ultraporous Fe-Oxide/SiO2 aerogel. Hyperfine Interact 165:203–208

    Article  Google Scholar 

  14. van Raap MBF, Sanchez FH, Leyva AG, Japas ML, Cabanillas E, Troiani H (2007) Synthesis and magnetic properties of iron oxide-silica aerogel nanocomposites. Physica B 398:229–234

    Article  Google Scholar 

  15. Fabrizioli P, Burgi T, Burgener M, van Doorslaer S, Baiker A (2002) Synthesis, structural and chemical properties of iron oxide-silica aerogels. J Mater Chem 12:619–630

    Article  CAS  Google Scholar 

  16. Clapsaddle BJ, Gash AE, Satcher JH, Simpson RL (2003) Silicon oxide in an iron(III) oxide matrix: the sol-gel synthesis and characterization of Fe-Si mixed oxide nanocomposites that contain iron oxide as the major phase. J Non-Cryst Solids 331:190–201

    Article  CAS  Google Scholar 

  17. Gash AE, Tillotson T.M., Satcher J.H. Jr., Poco J.F., Hrubesh L.W., Simpson R.L. (2001) Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem Mater 13:999–1007

    Article  CAS  Google Scholar 

  18. Casula MF, Corrias A, Paschina G (2000) Nickel oxide-silica and nickel-silica aerogel and aerogel nanocomposite materials. J Mater Res 15:2187–2194

    Article  CAS  Google Scholar 

  19. Mo CM, Li YH, Liu YS, Zhang Y, Zhang LD (1998) Enhancement effect of photoluminescence in assembles of nano-ZnO particles/silica aerogels. J Appl Phys 83:4389–4391

    Article  CAS  Google Scholar 

  20. Amlouk A, El Mir L, Kraiem S, Alaya S (2006) Elaboration and characterization of TiO2 nanoparticles incorporated in SiO2 host matrix. J Phys Chem Solids 67:1464–1468

    Article  CAS  Google Scholar 

  21. El Mir L, Amlouk A, Barthou C (2006) Visible luminescence of Al2O3 nanoparticles embedded in silica glass host matrix. J Phys Chem Solids 67:2395–2399

    Article  Google Scholar 

  22. El Mir L, Amlouk A, Barthou C, Alaya S (2008) Luminescence of composites based on oxide aerogels incorporated in silica glass host matrix. Mater Sci Eng C 28:771–776

    Article  CAS  Google Scholar 

  23. Wei TY, Kuo CY, Hsu YJ, Lu SY, Chang, YC (2008) Tin oxide nanocrystals embedded in silica aerogel: Photoluminescence and photocatalysis. Microporous Mesoporous Mater 112:580–588

    Article  CAS  Google Scholar 

  24. Kucheyev SO, Biener J, Wang YM, Baumann TF, Wu KJ, van Buuren T, Hamza AV, Satcher JH, Elam JW, Pellin MJ (2005) Atomic layer deposition of ZnO on ultralow-density nanoporous silica aerogel monoliths. Appl Phys Lett 86:083108

    Article  Google Scholar 

  25. Yao N, Cao SL, Yeung KL (2009) Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures. Microporous Mesoporous Mater 117:570–579

    Article  CAS  Google Scholar 

  26. Brinker CJ, Lu Y, Sellinger A, Fan H (1999) Evaporation-induced self-assembly: nanostructures made easy. Adv Mater 11:579–585

    Article  CAS  Google Scholar 

  27. Casula MF, Loche D, Marras S, Paschina G, Corrias A (2007) Role of urea in the preparation of highly porous nanocomposite aerogels. Langmuir 23:3509–3512

    Article  CAS  Google Scholar 

  28. Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S (2007) Magnetic and structural investigation of highly porous CoFe2O4-SiO2 nanocomposite aerogels. J Phys Chem C 111:916–922

    Article  CAS  Google Scholar 

  29. Carta D, Corrias A, Mountjoy G, Navarra G (2007) Structural study of highly porous nanocomposite aerogels. J Non-Cryst Solids 353:1785–1788

    Article  CAS  Google Scholar 

  30. Carta D, Mountjoy G, Navarra G, Casula MF, Loche D, Marras S, Corrias A (2007) X-ray absorption investigation of the formation of cobalt ferrite nanoparticles in an aerogel silica matrix. J Phys Chem C 111:6308–6317

    Article  CAS  Google Scholar 

  31. Carta D, Casula MF, Corrias A, Falqui A, Loche D, Mountjoy G, Wang P (2009) Structural and Magnetic Characterization of Co and Ni Silicate Hydroxides in Bulk and in Nanostructures within Silica Aerogels. Chem Mater 21:945–953

    Article  CAS  Google Scholar 

  32. Loche D, Casula MF, Falqui A, Marras S, Corrias A (2010) Preparation of Mn, Ni, Co ferrite nanocomposite aerogels by an urea-assisted sol-gel procedure. J Nanosci Nanotechnol 10:1008–1016. doi:10.1166/jnn.2010.1907

    Article  CAS  Google Scholar 

  33. Carta D, Loche D, Mountjoy G, Navarra G, Corrias A (2008) NiFe2O4 nanoparticles dispersed in an aerogel silica matrix: An X-ray absorption study. J Phys Chem C 112:15623–15630

    Article  CAS  Google Scholar 

  34. Carta D, Casula MF, Mountjoy G, Corrias A (2008) Formation and cation distribution in supported manganese ferrite nanoparticles: an X-ray absorption study. Phys Chem Chem Phys 10:3108–3117

    Article  CAS  Google Scholar 

  35. Carta D, Casula MF, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A (2009) A Structural and Magnetic Investigation of the Inversion Degree in Ferrite Nanocrystals MFe2O4 (M = Mn, Co, Ni). J Phys Chem C 113:8606–8615

    Article  CAS  Google Scholar 

  36. Dutta P, Dunn BC, Eyring EM, Shah N, Huffman GP, Manivannan A, Seehra S (2005) Characteristics of cobalt nanoneedles in 10% Co/Aerogel fischer-tropsch catalyst. Chem Mater 17:5183–5186

    Article  CAS  Google Scholar 

  37. Leventis N, Chandrasekaran N, Sadekar AG, Sotiriou-Leventis C, Lu HB (2009) One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials. J Am Chem Soc 131:4576–4577

    Article  CAS  Google Scholar 

  38. Al-Mutaseb SA, Ritter JA (2003) Preparation and Properties of Resorcinol-Formaldehyde Organic and Carbon Gels. Adv Mater 15:101–114

    Article  Google Scholar 

  39. Leventis N, Chandrasekaran N, Sotirou-Leventis C, Mumtaz A (2009) Smelting in the age of nano: iron aerogels. J Mater Chem 19:63–65

    Article  CAS  Google Scholar 

  40. Balkis Ameen K, Rajasekar K, Rajasekharan T (2007) Silver nanoparticles in mesoporous aerogel exhibiting selective catalytic oxidation of benzene in CO2 free air. Catal Lett 119:289–295

    Article  CAS  Google Scholar 

  41. Tai Y, Murakami J, Tajiri K, Ohashi F, Date M, Tsubota S (2004) Oxidation of carbon monoxide on Au nanoparticles in titania and titania-coated silica aerogels. Appl Catal A 268:183–187

    Article  CAS  Google Scholar 

  42. Anderson K, Fernandez SC, Hardacre C, Marr PC (2004) Preparation of nanoparticulate metal catalysts in porous supports using an ionic liquid route; hydrogenation and C-C coupling. Inorg Chem Comm 7:73–76

    Article  CAS  Google Scholar 

  43. Martinez S, Moreno-Manas M, Vallribera A, Schubert U, Roig A, Molins E (2006) Highly dispersed nickel and palladium nanoparticle silica aerogels: sol-gel processing of tethered metal complexes and application as catalysts in the Mizoroki-Heck reaction. New J Chem 30:1093–1097

    Article  CAS  Google Scholar 

  44. Rotter H, Landau MV, Carrera M, Goldfarb D, Herskowitz M (2004) High surface area chromia aerogel efficient catalyst and catalyst support for ethylacetate combustion. Appl Catal B 47:111–126

    Article  CAS  Google Scholar 

  45. Cai J, Kimura S, Wada M, Kuga S (2009) Nanoporous Cellulose as Metal Nanoparticles Support. Biomacromolecules 10:87–94

    Article  CAS  Google Scholar 

  46. Ameen KB, Rajasekharan T, Rajasekharan MV (2006) Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J Non-Cryst Sol 352:737–746

    Article  Google Scholar 

  47. Ayers MR, Song XY, Hunt AJ (1996) Preparation of nanocomposite materials containing WS2, δ-WN,Fe3O4, or Fe9S10 in a silica aerogel host. J Mater Sci 31:6251–6257

    Article  CAS  Google Scholar 

  48. Biener J, Baumann TF, Wang YM, Nelson EJ, Kucheyev SO, Hamza AV, Kemell M, Ritala M, Leskela M (2007) Ruthenium/aerogel nanocomposites via atomic layer deposition. Nanotechnology 18:055303

    Article  Google Scholar 

  49. Kuthirummal N, Dean A, Yao C, Risen W (2008) Photo-formation of gold nanoparticles: Photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels. Spectrochim Acta, Part A 70:700–703

    Article  Google Scholar 

  50. Morley KS, Marr PC, Webb PB, Berry AR, Allison FJ, Moldovan G, Brown PD, Howdle SM (2002) Clean preparation of nanoparticulate metals in porous supports: a supercritical route. J Mater Chem 12:1898–1905

    Article  CAS  Google Scholar 

  51. Morley KS, Licence P, Marr PC, Hyde JR, Brown PD, Mokaya R, Xia YD, Howdle SM (2004) Supercritical fluids: A route to palladium-aerogel nanocomposites. J Mater Chem 14:1212–1217

    Article  CAS  Google Scholar 

  52. Zhang Y, Kang DF, Saquing C, Aindow M, Erkey, C (2005) Supported platinum nanoparticles by supercritical deposition. Ind Eng Chem Res 44:4161–4164

    Article  CAS  Google Scholar 

  53. Martinez S, Vallribera A, Cotet CL, Popovici M, Martin L, Roig A, Moreno-Manas M, Molins E (2005) Nanosized metallic particles embedded in silica and carbon aerogels as catalysts in the Mizoroki-Heck coupling reaction. New J Chem 29:1342–1345

    Article  CAS  Google Scholar 

  54. Moerke W, Lamber R, Schubert U, Breitscheidel B (1994) Metal Complexes in Inorganic Matrixes. 11. Composition of Highly Dispersed Bimetallic Ni, Pd Alloy Particles Prepared by Sol-Gel Processing: Electron Microscopy and FMR Study. Chem Mater 6:1659–1666

    Article  CAS  Google Scholar 

  55. Dai S, Ju YU, Gao HJ, Lin JS, Pennycook SJ, Barnes CE (2000) Preparation of silica aerogel using ionic liquids as solvents. Chem Commun 243–244

    Google Scholar 

  56. Smith DD, Sibille L, Cronise RJ, Noever DA (1998) Surface plasmon resonance evaluation of colloidal silver aerogel filters. J Non-Cryst Solids 225:330–334

    Article  CAS  Google Scholar 

  57. Tai Y, Watanabe M, Murakami J, Tajiri K (2007) Composite formation of thiol-capped Au nanoparticles and mesoporous silica prepared by a sol-gel method. J Mater Sci 42:1285–1292

    Article  CAS  Google Scholar 

  58. Creighton JA, Blatchford CG, Albrecht MG (1979) Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J Chem Soc Faraday Trans 2:790–798

    Google Scholar 

  59. Brust M, Walker M, Bethell D, Sciffrin DJ, Whyman R (1994) Synthesis of Thiol Derivatised Gold Nanoparticles in a Two Phase Liquid/Liquid System. J Chem Soc Chem Commun 801–802

    Google Scholar 

  60. Tai Y, Tajiri K (2008) Preparation, thermal stability, and CO oxidation activity of highly loaded Au/titania-coated silica aerogel catalysts. Appl Catal A 342:113–118

    Article  CAS  Google Scholar 

  61. Anderson M L, Morris C A, Stroud R M, Merzbacher C I, Rolison D R (1999) Colloidal gold aerogels: Preparation, properties, and characterization. Langmuir 15:674–681

    Article  CAS  Google Scholar 

  62. Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R (1999) Silica sol as a nanoglue: Flexible synthesis of composite aerogels. Science 284:622–624

    Article  CAS  Google Scholar 

  63. Wallace J M, Stroud R M, Pietron J J, Long J W, Rolison D R (2004) The effect of particle size and protein content on nanoparticle-gold-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures. J Non-Cryst Solids 350:31–38

    Article  CAS  Google Scholar 

  64. Wallace J M, Rice J K, Pietron J J, Stroud R M, Long J W, Rolison D R (2003) Silica nanoarchitectures incorporating self-organized protein superstructures with gas-phase bioactivity (their is also a mistake for the pages for this reference. NanoLett 3:1463–1467

    Article  CAS  Google Scholar 

  65. Leventis N, Elder I A, Long G J, Rolison, D R (2002) Using nanoscopic hosts, magnetic guests, and field alignment to create anisotropic composite gels and aerogels. NanoLett 2:63–67

    Article  CAS  Google Scholar 

  66. Racka K, Gich M, Slawska-Waniewska A, Roig A, Molins E (2005) Magnetic properties of Fe nanoparticle systems. J Magn Magn Mater 290:127–130

    Article  Google Scholar 

  67. Dunn BC, Cole P, Covington D, Webster MC, Pugmire RJ, Ernst RD, Eyring EM, Shah N, Huffman GP (2005) Silica aerogel supported catalysts for Fischer-Tropsch synthesis. Appl Catal A 278:233–238

    Article  CAS  Google Scholar 

  68. Casula MF, Corrias A, Paschina G (2003) Iron-cobalt-silica aerogel nanocomposite materials. J Sol-Gel Sci Technol 26:667–670

    Article  CAS  Google Scholar 

  69. Casula MF, Corrias A, Paschina G (2002) FeCo-SiO2 nanocomposite aerogels by high temperature supercritical drying. J Mater Chem 12:1505–1510

    Article  CAS  Google Scholar 

  70. Corrias A, Casula MF, Ennas G, Marras S, Navarra G, Mountjoy G (2003) X-ray absorption spectroscopy study of FeCo-SiO2 nanocomposites prepared by the sol-gel method. J Phys Chem B 107:3030–3039

    Article  CAS  Google Scholar 

  71. Casula MF, Corrias A, Navarra G (2003) An EXAFS study on iron-cobalt-silica nanocomposite materials prepared by the sol-gel method. J Sol-Gel Sci Technol 26:453–456

    Article  CAS  Google Scholar 

  72. Casu A, Casula MF, Corrias A, Falqui A, Loche D, Marras S, Sangregorio C (2008) The influence of composition and porosity on the magnetic properties of FeCo-SiO2 nanocomposite aerogels. Phys Chem Chem Phys 10:1043–1052

    Article  CAS  Google Scholar 

  73. Carta D, Mountjoy G, Gass M, Navarra G, Casula MF, Corrias A (2007) Structural characterization study of FeCo alloy nanoparticles in a highly porous aerogel silica matrix. J Chem Phys 127: 204705

    Article  CAS  Google Scholar 

  74. Falqui A, Corrias A, Gass M, Mountjoy G (2009) A Transmission Electron Microscopy Study of Fe-Co Alloy Nanoparticles in Silica Aerogel Matrix Using HREM, EDX, and EELS. Micros Microan 15:114–124

    Article  CAS  Google Scholar 

  75. Hund JF, Bertino MF, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13

    Article  CAS  Google Scholar 

  76. Corrias A, Casula MF, Falqui A, Paschina G (2004) Preparation and characterization of FeCo-Al2O3 and Al2O3 aerogels. J Sol-Gel Sci Technol 31:83–86

    Article  CAS  Google Scholar 

  77. Corrias A, Casula MF, Falqui A, Paschina G (2004) Evolution of the structure and magnetic properties of FeCo nanoparticles in an alumina aerogel matrix. Chem Mater 16:3130–3138

    Article  CAS  Google Scholar 

  78. Corrias A, Navarra G, Casula MF, Marras S, Mountjoy, G (2005) An X-ray absorption spectroscopy investigation of the formation of FeCo alloy nanoparticles in Al2O3 xerogel and aerogel matrixes. J Phys Chem B 109:13964–13970

    Article  CAS  Google Scholar 

  79. Casula MF, Concas G, Congiu F, Corrias A, Falqui A, Spano G (2005) Near equiatomic FeCo nanocrystalline alloy embedded in an alumina aerogel matrix: Microstructural features and related magnetic properties. J Phys Chem B 109:23888–23895

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to D. Loche, A. Falqui, D. Carta, G. Navarra, and G. Mountjoy for discussion and proof reading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Corrias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Corrias, A., Casula, M.F. (2011). Aerogels Containing Metal, Alloy, and Oxide Nanoparticles Embedded into Dielectric Matrices. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_16

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics