Skip to main content

Interpenetrating Organic/Inorganic Networks of Resorcinol-Formaldehyde/Metal Oxide Aerogels

  • Chapter
  • First Online:
Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

Interpenetrating native and polymer-crosslinked resorcinol-formaldehyde (RF) and metal oxide (MOx) networks have been synthesized in one pot through the catalytic effect of gelling solutions of hydrated metal ions on the gelation of RF. Pyrolysis under argon (Ar) induces carbothermal processes that, depending on the chemical identity of MOx, yield either metals in the element form or the corresponding carbides. RF–MOx networks in the xerogel and polymer-crosslinked aerogel (X-aerogel) forms undergo those processes at temperatures up to 400°C lower than in the native aerogel form. In addition to the significance of the RF–MOx interpenetrating networks in the design of new materials (mesoporous and macroporous monolithic metals and carbides), the effect of the compactness of the nanostructure on the activation of the carbothermal processes has important implications for process design engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ρ s,FeOx  = 3.03 ± 0.07 g cm−3; ρ s,NiOx  = 3.7 ± 0.4 g cm−3; ρ s,SnOx  = 3.0 ± 0.1 g cm−3; ρ s,CrOx  = 3.69 ± 0.03g cm−3; ρ s,TiOx  = 3.77 ± 0.07 g cm−3; ρ s,HfOx =3.8 ± 0.2 g cm−3; ρ s,YOx =2.39 ± 0.03 g cm−3; ρ s,DyOx =3.02 ± 0.05 g cm−3.

References

  1. Interpenetrating polymer networks. Klempner D, Sperling L H, Utracki L A Eds, American Chemical Society, Washington DC (1994)

    Google Scholar 

  2. Pope E J A, Asami M, Mackenzie J D (1989) Transparent silica gel-PMMA composites. J Mater Res 4: 1018–1026

    Article  CAS  Google Scholar 

  3. Philipp G, Schmidt H (1984) New materials for contact lenses prepared from Si- and Ti-alkoxides by the sol-gel process. J Non-Cryst Solids 63: 283–292

    Article  CAS  Google Scholar 

  4. Huang H H, Orler B, Wilkes G L (1987) Structure-property behavior of new hybrid materials incorporating oligomeric species into sol-gel glasses. 3. Effect of acid content, tetraethoxysilane content, and molecular weight of poly(dimethylsiloxane). Macromolecules 20: 1322–1330

    Article  CAS  Google Scholar 

  5. Sanchez C, Robot F (1994) Design of hybrid organic-inorganic materials synthesized via sol-gel chemistry. New J Chem 18: 1007–1047

    CAS  Google Scholar 

  6. Wen J, Wilkes G L (1996) Organic/inorganic hybrid network materials by the sol-gel approach. Chem Mater 8: 1667–1681

    Article  CAS  Google Scholar 

  7. Hu Y, Mackenzie J D (1992) Rubber-like elasticity of organically modified silicates. J Mater Sci 27: 4415–4420

    Article  CAS  Google Scholar 

  8. Novak B M, Auerbach D, Verrier C (1994) Low-density, mutually interpenetrating organic-inorganic composite materials via supercritically drying techniques. Chem Mater 6: 282–286

    Article  CAS  Google Scholar 

  9. Kramer S J, Rubio-Alonso F, Mackenzie J D (1998) Organically modified silicate aerogels, “aeromosils.” Mat Res Soc Symp Proc 435: 295–300

    Article  Google Scholar 

  10. Henz B J, Hawa T, Zachariah M (2009) Molecular dynamics simulation of the energetic reaction between Ni and Al nanoparticles. J Appl Phys 105: 124310

    Article  Google Scholar 

  11. Merzbacher C, Bernstein R, Homrighaus Z, Rolison D (2000) Thermally emitting iron aerogel composites. NRL Report: NRL/MR/1004--00-8490

    Google Scholar 

  12. Esmaeili B, Chaouki J, Dubois C (2009) Encapsulation of nanoparticles by polymerization compounding in a gas/solid fluidized bed reactor. AIChE Journal 55: 2271–2278

    Article  CAS  Google Scholar 

  13. Zhao L, Clapsaddle B J, Satcher J H, Schaefer D W, Shea K J (2005) Integrated chemical systems: the simultaneous formation of hybrid nanocomposites of iron oxide and organo silsesquioxanes. Chem Mater 17: 1358–1366

    Article  CAS  Google Scholar 

  14. Teixeira da Silva V L S, Ko E I, Schmal M, Oyama S T (1995) Synthesis of niobium carbide from niobium oxide aerogels. Chem Mater 7: 179–184

    Article  CAS  Google Scholar 

  15. Walsh D, Arcelli L, Toshiyuki I, Tanaka J, Mann S (2003) Dextran templating for the synthesis of metallic and metal oxide sponges. Nat Mater 2: 386–390

    Article  CAS  Google Scholar 

  16. Song Y, Yang Y, Medforth C J, Pereira E, Singh A K, Xu H, Jiang Y, Brinker C J, van Swol F, Shelnutt J (2004) Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures. J Am Chem Soc 126: 635–645

    Article  CAS  Google Scholar 

  17. Sherman A J, Williams B E, Delarosa M J, Laferla R. (1991) Characterization of porous cellular materials fabricated by CVD. In Mechanical Properties of Porous and Cellular Materials, Sieradzki K, Green D, Gibson L J, Eds, Materials Research Society Symposium Proceedings 207, Materials Research Society: Pittsburgh, PA, pp 141–149

    Google Scholar 

  18. Biener J, Hodge A M, Hamza A V, Hsiung L L, Satcher J H (2005) Nanoporous Au: a high yield strength material. J Appl Phys 97: 1–4

    Article  Google Scholar 

  19. Tappan B C, Huynh M H, Hiskey M A, Chavez D E, Luther E P, Mang J T, Son S F (2006) Ultralow-Density Nanostructured Metal Foams: Combustion Synthesis, Morphology, and Composition. J Am Chem Soc 128: 6589–6594

    Article  CAS  Google Scholar 

  20. Kim H S, Bugli G, Djéga-Mariadassou G (1999) Preparation and characterization of niobium carbide and carbonitride. J Solid-State Chem 142: 100–107

    Article  CAS  Google Scholar 

  21. Pérez-Cadenas A F, Maldonado-Hódar F J, Moreno-Castilla C (2005) Molybdenum carbide formation in molybdenum-doped organic and carbon aerogels. Langmuir 21: 10850–10855

    Article  Google Scholar 

  22. Maldonado-Hódar, Pérez-Cadenas A F, Moreno-Castilla C (2003) Morphology of heat-treated tungsten doped monolithic carbon aerogels. Carbon 41: 1291–1299

    Article  Google Scholar 

  23. Li X K, Liu L, Zhang Y X, Shen Sh D, Ge Sh, Ling L Ch (2001) Synthesis of nanometre silicon carbide whiskers from binary carbonaceous silica aerogels. Carbon 39: 159–165

    Article  CAS  Google Scholar 

  24. Li X K, Liu L, Ge Sh, Shen Sh D, Song J R, Zhang Y X, Li P H (2001) The preparation of Ti(C,N,O) nanoparticles using binary carbonaceous titania aerogel. Carbon 39: 827–833

    Article  CAS  Google Scholar 

  25. Rhine W, Wang J, Begag R (2006) Polyimide aerogels, carbon aerogels, and metal carbide aerogels and methods of making same. US Pat No: 7,074,880

    Google Scholar 

  26. Al-Muhtaseb S A, Ritter J A (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15: 101–114

    Article  CAS  Google Scholar 

  27. Moreno-Castilla C, Maldonado-Hódar F J (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43: 455–465

    Article  CAS  Google Scholar 

  28. Sánchez-Polo M, Rivera-Utrilla J, von Gunten U (2006) Metal-doped carbon aerogels as catalysts during ozonation processes in aqueous solutions. Water Res 40: 3375–3384

    Article  Google Scholar 

  29. Baumann T F, Fox G A, Satcher J H, Yoshizawa N, Fu R, Dresselhaus M S (2002) Synthesis and Characterization of copper doped carbon aerogel. Langmuir 18: 7073–7076

    Article  CAS  Google Scholar 

  30. Baumann T F, Satcher J H (2003) Homogeneous incorporation of metal nanoparticles into ordered macroporous carbons. Chem Mater 15: 3745–3747

    Article  CAS  Google Scholar 

  31. Job N, Picard R, Vertruyen B, Colomer J-F, Marien J, Picard J-P (2007) Synthesis of transition metal-doped carbon xerogels by cogelation. J Non-Cryst Solids 353: 2333–2345

    Article  CAS  Google Scholar 

  32. Fu R, Baumann T F, Cronin S, Dressekhaus G, Dresselhaus M S, Satcher J H (2005) Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels. Langmuir 21; 2647–2651

    Article  CAS  Google Scholar 

  33. Maldonado-Hódar F J, Moreno-Castilla C, Rivera-Utrilla J, Hanzawa Y, Yamada Y (2000) Catalytic graphitization of carbon aerogels by transition metals. Langmuir 16: 4367–4373

    Article  Google Scholar 

  34. Yoshizawa N, Hatori H, Soneda Y, Hanzawa Y, Kaneko K, Dresselhaus M S (2003) Structure and electrochemical properties of carbon aerogels polymerized in the presence of Cu2+. J Non-Cryst Solids 330: 99–105

    Article  CAS  Google Scholar 

  35. Maldonado-Hódar F J, Moreno-Castilla C, Pérez-Cadenas A F (2004) Surface morphology, metal dispersion, and pore texture of transition metal-doped monolithic carbon aerogels and steam-activated derivatives. Micropor Mesopor Mater 69: 119–125

    Article  Google Scholar 

  36. Steiner S A, Baumann T F, Kong J, Satcher J H, Dresselhaus M S (2007) Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Langmuir 23: 5161–5166

    Article  CAS  Google Scholar 

  37. Cotton, F. A.; Wilkinson, G.; Murillo, C. A.; Bochmann, M. “Advanced Inorganic Chemistry Sixth Edition,” Wiley: New York, N.Y. (1999)

    Google Scholar 

  38. Leventis N, Vassilaras P, Fabrizio E F, Dass A (2007) Polymer nanoencapsulated rare earth aerogels: chemically complex but stoichiometrically similar core-shell superstructures with skeletal properties of pure compounds. J Mater Chem 17: 1502–1508

    Article  CAS  Google Scholar 

  39. Ziese W (1933) Die Reaktion von Äthylenoxyd mit Lösungen von Erd- und Schwermetallhalogeniden. Ein neur Weg zur Gewinnung von Solen und reversiblen Gelen von Metalloxydhydraten. Ber 66: 1965–1972

    Google Scholar 

  40. Kearby K, Kistler S S, Swann S Jr. (1938) Aerogel catalyst: conversion of alcohols to amines. Ind Eng Chem 30: 1082–1086

    Article  CAS  Google Scholar 

  41. Sydney L E (1983) Preparation of sols and gels. British Patent No.: 2,111,966

    Google Scholar 

  42. Gash A E, Tillotson T M, Satcher J H, Hrubesh L W, Simpson R L (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non-Cryst Solids 285: 22–28

    Article  CAS  Google Scholar 

  43. Gash A E, Tillotson T M, Satcher J H, Poco J F, Hrubesh L W, Simpson R L (2001) Use of epoxides in the sol-gel synthesis of porous Iron(III) oxide monoliths from Fe(III) salts. Chem Mater: 13, 999–1007

    Article  CAS  Google Scholar 

  44. Sisk C N, Hope-Weeks J (2008) Copper(II) aerogels via 1,2-epoxide gelation. J Mater Chem 18: 2607–2610

    Article  CAS  Google Scholar 

  45. Jones R W (1989) Fundamental principles of sol-gel technology. The Institute of Metals, London: UK

    Google Scholar 

  46. Leventis N, Chandrasekaran N, Sadekar A G, Sotiriou-Leventis C, Lu H (2009) One-pot synthesis of interpenetrating inorganic/organic networks of CuO/resorcinol-formaldehyde aerogels: nanostructured energetic materials. J Am Chem Soc 131: 4576–4577

    Article  CAS  Google Scholar 

  47. Pekala R W (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24: 3221–3227

    Article  CAS  Google Scholar 

  48. Pekala R W, Alviso C T, Kong FM, Hulsey S S (1992) Aerogels derived from multifunctional organic monomers. J Non-Cryst Solids 145: 90–98

    Article  CAS  Google Scholar 

  49. Qin G, Guo S (2001) Preparation of RF organic aerogels and carbon aerogels by alcoholic sol-gel process. Carbon 39: 1935–1937

    Article  CAS  Google Scholar 

  50. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol-formaldehyde aerogels. Chem Mater 19: 6138–6144

    Article  CAS  Google Scholar 

  51. Reuß M, Ratke L (2008) Subcritically dried RF-aerogels catalysed by hydrochloric acid. J Sol-Gel Sci Technol 47: 74–80

    Article  Google Scholar 

  52. Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12: 1625–1628

    Article  CAS  Google Scholar 

  53. Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous electrically conducting carbon networks by pyrolysis of isocyanate-cross-linked resorcinol-formaldehyde aerogels. Chem Mater 20: 6985–6997

    Article  CAS  Google Scholar 

  54. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh A-M M (2002) Nano-engineering strong silica aerogels. Nano Lett 2: 957–960

    Article  CAS  Google Scholar 

  55. Meador M A B, Capadona L A, MacCorkle L, Papadopoulos D S, Leventis N (2007) Structure-property relationships in porous 3D nanostructures as a function of preparation conditions: isocyanate cross-linked silica aerogels. Chem Mater 19: 2247–2260

    Article  CAS  Google Scholar 

  56. Leventis N, Mulik S, Wang X, Dass A, Sotiriou-Leventis C, Lu H (2007) Stresses at the interface of micro with nano. J Am Chem Soc 129: 10660–10661

    Article  CAS  Google Scholar 

  57. Leventis N (2007) Three-dimensional core-shell superstructures: mechanically strong aerogels. Acc Chem Res 40: 874–884

    Article  CAS  Google Scholar 

  58. Lukens W W Jr, Schmidt-Winkel P, Zhao D, Feng J, Stucky G D (1999) Evaluating pore sizes in mesoporous materials: a simplified standard adsorption method and a simplified Broekhoff-de Boer method. Langmuir 15: 5403–5409

    Article  CAS  Google Scholar 

  59. Leventis N, Chandrasekaran N, Sotiriou-Leventis C, Mumtaz A (2009) Smelting in the age of nano: iron aerogels. J Mater Chem 19: 63–65

    Article  CAS  Google Scholar 

  60. Leventis N, Chandrasekaran N, Sadekar A G, Mulik S, Sotiriou-Leventis C (2010) The effect of compactness on the carbothermal conversion of interpenetrating metal oxide/resorcinol-formaldehyde nanoparticle networks to porous metals and carbides. J Mater Chem 20: 7456–7471

    Article  CAS  Google Scholar 

  61. Harreld J H, Dong W, Dunn B (1998) Ambient pressure synthesis of serogel-like vanadium oxide and molybdenum oxide. Mater Res Bull 33: 561–567

    Article  CAS  Google Scholar 

  62. Long J W, Swider-Lyons K E, Stroud R M, Rolison D R (2000) Design of pore and matter architectures in manganese oxide charge-storage materials. Electrochem Solid-State Lett 3: 453–456

    Article  CAS  Google Scholar 

  63. Doescher M S, Pietron J J, Dening B M, Long J W, Rhodes C P, Edmondson C A, Rolison D R (2005) Using an oxide nanoarchitecture to make or break a proton wire. Anal Chem 77: 7924–7932

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the Army Research Office (W911NF-10-1-0476) and the National Science Foundation (CHE-0809562 and CMMI-0653919) for financial support, the Materials Research Center of Missouri S&T for support in sample characterization (SEM and XRD), co-investigator Professor Chariklia Sotiriou-Leventis, and the graduate students who have contributed to this effort: Naveen Chandrasekaran, Sudhir Mulik, and Anand G. Sadekar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas Leventis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Leventis, N. (2011). Interpenetrating Organic/Inorganic Networks of Resorcinol-Formaldehyde/Metal Oxide Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics