Resorcinol–Formaldehyde Aerogels

  • Sudhir Mulik
  • Chariklia Sotiriou-Leventis
Part of the Advances in Sol-Gel Derived Materials and Technologies book series (Adv.Sol-Gel Deriv. Materials Technol.)


Resorcinol–formaldehyde (RF) aerogels comprise an important class of organic aerogels, and they are studied intensely for their potential uses in thermal insulation, catalysis, and as precursors of electrically conducting carbon aerogels with applications in filtration, energy storage, and the green energy initiative. This broad overview focuses on how the chemical, microscopic, as well as macroscopic characteristics of RF and thereby carbon aerogels can be tailored to desired application-specific structure–property relationships by varying processing conditions such as the monomer concentration, the pH, and the catalyst-to-monomer ratio.


Silica Aerogel Carbon Aerogel Electrophilic Aromatic Substitution Organic Aerogel Hydroxymethyl Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fricke J (1988) Aerogels – highly tenuous solids with fascinating properties. J Non-Cryst Solids 100: 169–173.CrossRefGoogle Scholar
  2. 2.
    Fricke J (1992) Aerogels and their applications. J Non-Cryst Solids 147–148: 356–362.CrossRefGoogle Scholar
  3. 3.
    Hench L, West J (1990) The sol-gel process. Chem Rev 90: 33–72.CrossRefGoogle Scholar
  4. 4.
    Brinker C, Scherer G (1990) Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. Academic Press Inc.Google Scholar
  5. 5.
    Carlson G, Lewis D, McKinley K, Richardson J, Tillotson T (1995) Aerogel commercialization: technology, markets and costs. J Non-Cryst Solids 186: 372–379.CrossRefGoogle Scholar
  6. 6.
    Pekala R (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24: 3221–3227.CrossRefGoogle Scholar
  7. 7.
    Pierre A, Pajonk G (2002) Chemistry of Aerogels and Their Applications. Chem Rev 102: 4243–4265.CrossRefGoogle Scholar
  8. 8.
    Al-Muhtaseb S, Ritter J (2003) Preparation and properties of resorcinol-formaldehyde organic and carbon gels. Adv Mater 15: 101–114.CrossRefGoogle Scholar
  9. 9.
    Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-Efficient Acid-Catalyzed Synthesis of Resorcinol-Formaldehyde Aerogels. Chem Mater 19: 6138–6144.CrossRefGoogle Scholar
  10. 10.
    Barbieri O, Ehrburger-Dolle F, Rieker T, Pajonk G, Pinto N, Venkateswara Rao, A (2001) Small-angle X-ray scattering of a new series of organic aerogels. J Non-Cryst Solids 285: 109–115.CrossRefGoogle Scholar
  11. 11.
    Brandt R, Fricke J (2004) Acetic-acid-catalyzed and subcritically dried carbon aerogels with a nanometer-sized structure and a wide density range. J Non-Cryst Solids 350: 131–135.CrossRefGoogle Scholar
  12. 12.
    Pekala R, Schaefer D (1993) Structure of organic aerogels 1. Morphology and scaling. Macromoleculres 26: 5487–5493.Google Scholar
  13. 13.
    Gebert M, Pekala R (1994) Fluorescence and light-scattering studies of sol-gel reactions. Chem Mater 6: 220–226.CrossRefGoogle Scholar
  14. 14.
    Jirglova H, Perez-Cadenas A, Maldonado-Hodar F (2009) Synthesis and Properties of Phloroglucinol- Phenol – Formaldehyde Carbon Aerogels and Xerogels. Langmuir 25: 2461–2466.CrossRefGoogle Scholar
  15. 15.
    Wu D, Fu R, Sun Z, Yu Z (2005) Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde. J Non-Cryst Solids 351: 915–921.CrossRefGoogle Scholar
  16. 16.
    Mendenhall R, Andrews G, Bruno J, Albert D (2000) Phenolic aerogels by high-temperature direct solvent extraction. U S Pat Ser No 221520.Google Scholar
  17. 17.
    Durairaj R (2005) Resorcinol: Chemistry, Technology and Applications. Springer, Germany 186–187.Google Scholar
  18. 18.
    Sprung M (1941) Reactivity of phenols toward paraformaldehyde. J Am Chem Soc 63: 334–343.CrossRefGoogle Scholar
  19. 19.
    Pizzi A, Mittal K (2003) Resorcinol Adhesive, Handbook of Adhesive Technology: Second Ed. Marcel Dekker, Inc. New York.Google Scholar
  20. 20.
    Mulik S, Sotiriou-Levetis C, Leventis N (2006) Acid-catalyzed time-efficient synthesis of resorcinol-formaldehyde aerogels and crosslinking with isocyanates. Polym Preprints 47: 364–365.Google Scholar
  21. 21.
    Yamamoto T, Nishimura T, Suzuki T, Tamon H (2001) Control of mesoporosity of carbon gels prepared by sol-gel polycondensation and freeze drying. J Non-Cryst Solids 288: 46–55.CrossRefGoogle Scholar
  22. 22.
    Tamon H, Ishizaka H, Mikami M, Okazaki M (1997) Porous structure of organic and carbon aerogels synthesized by sol-gel polycondensation of resorcinol with formaldehyde. Carbon 35: 791–796.CrossRefGoogle Scholar
  23. 23.
    Fung, A W P, Reynolds G A M, Wang Z, Dresselhaus M, Dresselhaus G, Pekala R (1995) Relationship between particle size and magnetoresistance in carbon aerogels prepared under different catalyst conditions. J Non-Cryst Solids 186: 200–208.CrossRefGoogle Scholar
  24. 24.
    (a) Horikawa T, Hayashi J, Muroyama K (2004) Controllability of pore characteristics of resorcinol-formaldehyde carbon aerogel. Carbon 42: 1625–1633. (b) Horikawa T, Hayashi J, Muroyama K (2004) Size control and characterization of spherical carbon aerogel particles from resorcinol-formaldehyde resin. Carbon 42: 169–175.Google Scholar
  25. 25.
    Pahl R, Bonse U, Pekala R, Kinney J (1991) SAXS investigations on organic aerogels. J Appl Crystallogr 24: 771–776.CrossRefGoogle Scholar
  26. 26.
    Saliger R, Bock V, Petricevic R, Tillotson T, Geis S, Fricke J (1997) Carbon aerogels from dilute catalysis of resorcinol with formaldehyde. J Non-Cryst Solids 221: 144–150.CrossRefGoogle Scholar
  27. 27.
    Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C (2008) Inter- and Intra-Primary-Particle Structure of Monolithic Carbon Aerogels Obtained with Varying Solvents. Langmuir 24:2820–2825.CrossRefGoogle Scholar
  28. 28.
    Mirzaeian M, Hall P (2009) The control of porosity at nano scale in resorcinol formaldehyde carbon aerogels. J Mater Sci 44: 2705–2713.CrossRefGoogle Scholar
  29. 29.
    Tamon H, Ishizaka H (1998) Porous characterization of carbon aerogels. Carbon 36:1397–1399.CrossRefGoogle Scholar
  30. 30.
    Job N, Pirard R, Marien J, Pirard J (2004) Porous carbon xerogels with texture tailored by pH control during sol-gel process. Carbon 42: 619–628.CrossRefGoogle Scholar
  31. 31.
    Feng Y, Miao L, Tanemura M, Tanemura S, Suzuki K (2008) Effects of further adding of catalysts on nanostructures of carbon aerogels. Mater Sci Eng B: Solid-State Materials for Advanced Technology 148: 273–276.CrossRefGoogle Scholar
  32. 32.
    Lin C, Ritter J (1997) Effect of synthesis pH on the structure of carbon xerogels. Carbon 35: 1271–1278.CrossRefGoogle Scholar
  33. 33.
    Conceicao F, Carrott P J M, Ribeiro Carrott M. M. L (2009) New carbon materials with high porosity in the 1–7 nm range obtained by chemical activation with phosphoric acid of resorcinol-formaldehyde aerogels. Carbon 47: 1874–1877.Google Scholar
  34. 34.
    Merzbacher C, Meier S, Pierce J, Korwin M (2001) Carbon aerogels as broadband non-reflective materials. J Non-Cryst Solids 285: 210–215.CrossRefGoogle Scholar
  35. 35.
    Fairen-Jimenez D, Carrasco-Marin F, Moreno-Castilla C (2006) Porosity and surface area of monolithic carbon aerogels prepared using alkaline carbonates and organic acids as polymerization catalysts. Carbon 44: 2301–2307.CrossRefGoogle Scholar
  36. 36.
    Berthon S, Barbieri O, Ehrburger-Dolle F, Geissler E, Achard P, Bley F, Hecht A.-M, Livet F, Pajonk G, Pinto N, Rigacci A, Rochas C (2001) DLS and SAXS investigations of organic gels and aerogels. J Non-Cryst Solids 285: 154–161.CrossRefGoogle Scholar
  37. 37.
    Brandt R, Petricevic R, Proebstle H, Fricke J (2003) Acetic acid catalyzed carbon aerogels. J Porous Mater 10: 171–178.CrossRefGoogle Scholar
  38. 38.
    Reuss M, Ratke L (2008) Subcritically dried RF-aerogels catalyzed by hydrochloric acid. J Sol-Gel Sci Technol 47: 74–80.CrossRefGoogle Scholar
  39. 39.
    Baumann T, Satcher J, Gash A (2002) Preparation of hydrophobic organic aerogels. US Pat Appl US 2002173554 A1 20021121.Google Scholar
  40. 40.
    March J (1992) Advanced Organic Chemistry, Reactions Mechanisms and Structure Fourth Edition, Wiley: New York 548–550.Google Scholar
  41. 41.
    (a) Moudrakovski I, Ratcliffe C, Ripmeester J, Wang L, Exarhos G, Baumann T, Satcher J (2005) Nuclear Magnetic Resonance Studies of Resorcinol-Formaldehyde Aerogels. J Phys Chem B 109: 11215–11222. (b) Werstler D (1986) Quantitative carbon-13 NMR characterization of aqueous formaldehyde resins: 2 Resorcinol-formaldehyde resins. Polymer 27: 757–64.Google Scholar
  42. 42.
    Berthon-Fabry S, Langohr D, Achard P, Charrier D, Djurado D, Ehrburger-Dolle F (2004) Anisotropic high–surface-area carbon aerogels. J Non-Cryst Solids 350: 136–144.CrossRefGoogle Scholar
  43. 43.
    Farmer J, Fix D, Mack G, Pekala R, Poco J (1996) Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 26: 1007–1018.CrossRefGoogle Scholar
  44. 44.
    Petricevic R, Glora M, Fricke J (2001) Planar fiber reinforced carbon aerogels for application in PEM fuel cells. Carbon 39:857–867.CrossRefGoogle Scholar
  45. 45.
    (a) Gierszal K, Jaroniec M (2006) Carbons with Extremely Large Volume of Uniform Mesopores Synthesized by Carbonization of Phenolic Resin Film Formed on Colloidal Silica Template. J Am Chem Soc 128: 10026-10027. (b) Tao Y, Endo M, Kaneko K (2009) Hydrophilicity-Controlled Carbon Aerogels with High Mesoporosity. J Am Chem Soc 131: 904–905.Google Scholar
  46. 46.
    Marie J, Berthon-Fabry S, Achard P, Chatenet M, Pradourat A, Chainet E (2004) Highly dispersed platinum on carbon aerogels as supported catalysts for PEM fuel cell-electrodes: comparison of two different synthesis paths. J Non-Cryst Solids 350: 88–96.CrossRefGoogle Scholar
  47. 47.
    Pekala R (1995) Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures. US 5476878 A 19951219.Google Scholar
  48. 48.
    Wicks Z, Jones F, Pappas S (1994) Organic Coatings: Science and Technology, Vol. 1: Applications, Properties, and Performance. Wiley New York 84–87.Google Scholar
  49. 49.
    Raetzsch M, Bucka H, Ivanchev S, Pavlyuchenko V, Leitner P, Primachenko O (2004) The reaction mechanism of the transetherification and crosslinking of melamine resins. Macromol Symp 217: 431–443.CrossRefGoogle Scholar
  50. 50.
    Pekala R (1992) Melamine-formaldehyde copolymer aerogels US 5081163 A 19920114.Google Scholar
  51. 51.
    Nguyen M, Dao L (1998) Effects of processing variable on melamine formaldehyde aerogel formation. J Non-Cryst Solids 225: 51–57.CrossRefGoogle Scholar
  52. 52.
    Alviso C, Pekala R (1991) Melamine formaldehyde aerogels. Polym Preprints 32: 242–243.Google Scholar
  53. 53.
    Li W, Reichenauer G, Fricke J (2002) Carbon aerogels derived from cresol-resorcinol-formaldehyde for supercapacitors. Carbon 40: 2955–2959.CrossRefGoogle Scholar
  54. 54.
    Perez-Caballero F, Peikolainen A.-L, Uibu M, Kuusik R, Volobujeva O, Koel M (2008) Preparation of carbon aerogels from 5-methylresorcinol-formaldehyde gels. Micropor Mesopor Mat 108: 230–236.CrossRefGoogle Scholar
  55. 55.
    Peikolainen A.-L, Perez-Caballero F, Koel M (2008) Low-density organic aerogels from oil shale by-product 5-methylresorcinol. Oil Shale 25: 348–358.CrossRefGoogle Scholar
  56. 56.
    Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels. Chem Mater 20: 6985–6997.CrossRefGoogle Scholar
  57. 57.
    Tanaka S, Katayama Y, Tate M, Hillhouse H, Miyake Y (2007) Fabrication of continuous mesoporous carbon films with face-centered orthorhombic symmetry through a soft templating pathway. J Mater Chem 17: 3639-3645.CrossRefGoogle Scholar
  58. 58.
    Baumann T, Satcher J (2004) Template-directed synthesis of periodic macroporous organic and carbon aerogels. J Non-Cryst Solids 350: 120–125.CrossRefGoogle Scholar
  59. 59.
    Bekyarova E, Kaneko K (2000) Structure and physical properties of tailor-made Ce, Zr-doped carbon aerogels. Adv Mater 12: 1625–1628.CrossRefGoogle Scholar
  60. 60.
    Baumann T, Fox G, Satcher J, Yoshizawa N, Fu R, Dresselhaus M (2002) Synthesis and Characterization of Copper-Doped Carbon Aerogels. Langmuir 18: 7073–7076.CrossRefGoogle Scholar
  61. 61.
    Baumann T, Worsley M, Han T, Satcher J (2008) High surface area carbon aerogel monoliths with hierarchical porosity. J Non-Cryst Solids 354: 3513–3515.CrossRefGoogle Scholar
  62. 62.
    Baumann T, Satcher J (2003) Homogeneous Incorporation of Metal Nanoparticles into Ordered Macroporous Carbons. Chem Mater 15: 3745–3747.CrossRefGoogle Scholar
  63. 63.
    Maldonado-Hodar F, Perez-Cadenas A, Moreno-Castilla C (2003) Morphology of heat – treated tungsten doped monolithic carbon aerogels. Carbon 41: 1291–1299.CrossRefGoogle Scholar
  64. 64.
    Job N, Pirard R, Marien J, Pirard J (2004) Synthesis of transition metal-doped carbon xerogels by solubilization of metal salts in resorcinol-formaldehyde aqueous solution. Carbon 42: 3217–3227.CrossRefGoogle Scholar
  65. 65.
    Maldonado-Hodar F, Ferro-Garcia M, Rivera-Utrilla J, Moreno-Castilla C (1999) Synthesis and textural characteristics of organic aerogels, transition metal-containing organic aerogels, and their carbonized derivatives. Carbon 37: 1199–1205.CrossRefGoogle Scholar
  66. 66.
    Leventis N, Chandrasekaran N, Sotiriou-Leventis C, Mumtaz A (2009) Smelting in the age of nano: iron aerogels. J Mater Chem 19: 63–65.CrossRefGoogle Scholar
  67. 67.
    Moreno-Castilla C, Maldonado-Hodar F (2005) Carbon aerogels for catalysis applications: An overview. Carbon 43: 455–465.CrossRefGoogle Scholar
  68. 68.
    Job N, Pirard R, Vertruyen B, Colomer J, Marien J, Pirard J (2007) Synthesis of transition metal – doped carbon xerogels by cogelation. J Non-Cryst Solids 353: 2333–2345.CrossRefGoogle Scholar
  69. 69.
    Fu R, Baumann T, Cronin S, Dresselhaus G, Dresselhaus M, Satcher J (2005) Formation of graphitic structures in cobalt - and nickel – doped carbon aerogels. Langmuir 21: 2647–2651.CrossRefGoogle Scholar
  70. 70.
    Lu X, Arduini-Schuster M, Kuhn J, Nilsson O, Fricke J, Pekala R (1992) Thermal conductivity of monolithic organic aerogels. Science 255: 971–972.CrossRefGoogle Scholar
  71. 71.
    Yoldas B, Annen M, Bostaph J (2000) Chemical engineering of aerogel morphology formed under nonsupercritical conditions for thermal insulation. Chem Mater 12: 2475–2484.CrossRefGoogle Scholar
  72. 72.
    Alviso C, Pekala R, Gross J, Lu X, Caps R, Fricke J (1996) Resorcinol-formaldehyde and carbon aerogel microspheres. Mater Res Soc Sym Proc 521–525.Google Scholar
  73. 73.
    Hrubesh L, Pekala R (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738.CrossRefGoogle Scholar
  74. 74.
    Rettelbach T, Ebert H, Caps R, Fricke J, Alviso C, Pekala R (1996) Thermal conductivity of resorcinol-formaldehyde aerogels. Therm Cond 23: 407–418.Google Scholar
  75. 75.
    Homonoff E (2000) New filtration materials for the new millennium. Book of Papers – International Nonwovens Technical Conference, Dallas, TX, United States, Sept. 26–28, 2000, 8.1–8.6.Google Scholar
  76. 76.
    Sanchez-Polo M, Rivera-Utrilla J, Mendez-Diaz J, Lopez-Penalver J (2008) Metal – doped carbon aerogels new materials for water treatments. Ind Eng Chem Res 47: 6001–6005.CrossRefGoogle Scholar
  77. 77.
    (a) Paguio R, Takagi M, Thi M, Hund F, Nikroo A, Paguio S, Luo R, Greenwood L, Acenas O, Chowdhury S (2007) Improving the wall uniformity of resorcinol formaldehyde foam shells by modifying emulsion components. Fusion Sci Technol, 51: 682–687. (b) (c) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Georgia-Pacific Chemicals LLCDecaturUSA
  2. 2.Department of ChemistryMissouri University of Science and TechnologyRollaUSA

Personalised recommendations