Skip to main content

History of Aerogels

  • Chapter
  • First Online:
Book cover Aerogels Handbook

Part of the book series: Advances in Sol-Gel Derived Materials and Technologies ((Adv.Sol-Gel Deriv. Materials Technol.))

Abstract

This chapter presents a historical account of the progressive development of the solid materials known as aerogels. The founding work of Kistler is first summarized. His precursory work attracted the attention of scientists who focused on the physics and chemistry of aerogels, reviewed in the second section. The latter studies allowed for the understanding of how a very high open porosity solid could be maintained when drying a gel and how some specific properties such as transparency or a hydrophobic character could be granted to these materials. In turn, a better knowledge of the scientific basis behind aerogels led to determining their technical characteristics and developing their applications, as addressed in the third section. The most recent developments summarized in the last section aim at a progressive transfer of these applications toward the industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kistler SS (1932) Coherent expanded aerogels. J Phys Chem 36:52–64

    Article  CAS  Google Scholar 

  2. Brinker CJ, Scherer GW (1990) Sol-gel science. The physics and chemistry of sol-gel processing, Academic Press, New-York: (a) p461; (b) p523; (c) p97

    Google Scholar 

  3. Gash AE, Tillotson TM, Satcher Jr. JH, Hrubesh LW, Simpson RL (2001) New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J Non Cryst Solids 285:22–28

    Article  CAS  Google Scholar 

  4. Eid J, Pierre AC, Baret G (2005) Preparation and characterization of transparent Eu doped Y2O3 aerogel monoliths, for application in luminescence. J Non Cryst Solids 351:218–227

    Article  CAS  Google Scholar 

  5. Buisson P, Pierre AC (2006) Immobilization in quartz fiber felt reinforced silica aerogel improves the activity of Candida rugosa lipase in organic solvents. J Mol Catal B Enzym 39:77–82

    Article  CAS  Google Scholar 

  6. Alemán1 J, Chadwick AV, He J, Hess M, Horie K, Jones RG, Kratochvíl P, Meisel I, Mita I, Moad G, Penczek S, Stepto RFT (2007) Definitions of terms relating to the Structure and processing of sols, gels, Networks, and inorganic–organic hybrid materials (IUPAC recommendations 2007). Pure Appl Chem 79:1801–1829

    Google Scholar 

  7. Freundlich H (1923) Colloid and capillary chemistry, Duttom Ed., New-York

    Google Scholar 

  8. Kistler SS (1941) Aerogels. Patent US 2249767 assigned to Monsanto Chemical Co

    Google Scholar 

  9. Kistler SS (1952) Water Repellent Aerogels. Patent US 2589705

    Google Scholar 

  10. Woignier T, Phalippou J, Zarzycki J (1984) Monolithic aerogels in the systems SiO2-B2O3, SiO2-P2O5, SiO2-B2O3-P2O5. J Non Cryst Solids 63:117–130

    Article  CAS  Google Scholar 

  11. Nicolaon GA, Teichner SJ (1968) Preparation of silica aerogels from methyl orthosilicate in alcoholic medium, and their properties. Bull Soc Chim Fr: 1906–1911

    Google Scholar 

  12. Teichner SJ (1986) Aerogels of inorganic oxides, Springer Proc Phys 6:22–30

    Article  CAS  Google Scholar 

  13. Brinker CJ, Ward KJ, Keefer KD, Holupka E, Bray PJ, Pearson RK (1986) Synthesis and structure of borate based aerogel. In Aerogels. Springer Proc Phys 6:57–67

    Article  CAS  Google Scholar 

  14. Pekala RW (1989) Organic aerogels from the polycondensation of resorcinol with formaldehyde. J Mater Sci 24:3221–3227

    Article  CAS  Google Scholar 

  15. Pekala RW, Mayer ST, Kaschmitter JL, Kong FM (1994) Carbon aerogels: an update on structure, properties, and applications In Attia YA (ed) Sol-gel Process Appls, Plenum, New-York 369–377

    Google Scholar 

  16. Marie J, Berthon-Fabry S, Chatenet M, Chainet E, Pirard R, Cornet N, Achard P (2007) Platinum supported on resorcinol–formaldehyde based carbon aerogels for PEMFC electrodes: Influence of the carbon support on electrocatalytic properties. J Appl Electrochem 37:147–153

    Article  CAS  Google Scholar 

  17. Sanchez C, Ribot F (1994) Design of hybrid organic–inorganic materials synthesized via sol-gel chemistry. New J Chem 18:1007–1047

    CAS  Google Scholar 

  18. Stanic V, Etsell TH, Pierre AC, R.J. Mikula RJ (1997) Metal Sulfide Preparation from a Sol-Gel Product and Sulfur. J Mater Chem 7:105–107

    Google Scholar 

  19. Broecker FJ, Heckmann W, Fischer F, Mielke M, Schroeder J, Stange A (1986) Structural analysis of granular silica aerogel. Springer Proc Phys 6:160–166

    Article  CAS  Google Scholar 

  20. Ebelmen M (1846) Recherches sur les combinaisons des acides borique et silicique avec les éthers. Ann Chim Phys 16:129–166; (1847) Sur l'hyalite artificielle et l'hydrophane. C R Acad Sci Paris 25:854–856

    Google Scholar 

  21. Peri JB (1966) Infrared study of OH and NH2 groups on the surface of a dry silica aerogel. J Phys Chem 70:2937–2945

    Article  CAS  Google Scholar 

  22. Woignier T, Phalippou J, Quinson JF, Pauthe M, Laveissiere F (1992) Physicochemical transformation of silica gels during hypercritical drying. J Non-Cryst Solids 145:25–32

    Article  CAS  Google Scholar 

  23. Vacher R, Phalippou J, Pelous J, Woignier (eds) (1989) On the fractal structure of silica aerogels. In Vacher R, Phalippou J, Pelous J, Woignier T (eds) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev. Phys. Appl. Colloq, 24-C4:127–131

    Google Scholar 

  24. Schaefer DW, Wilcoxon JP, Keefer KD, Bunker BC, Pearson RK, Thomas IM, Miller DE, (1987) Origin of porosity in synthetic materials. In Banavar JR, Koplik J, Winkler KW (eds) Phys chem porous media 2, American Institute of Physics 154: 63–80

    CAS  Google Scholar 

  25. Brinker CJ, Keefer KD, Schaefer DW, Ashley CS (1982) Sol-gel transition in simple silicates. J Non-Cryst Solids 48:47–64

    Article  CAS  Google Scholar 

  26. Tillotson TM, Hrubesh LW (1992) Transparent ultralow-density silica aerogels prepared by a two-step sol-gel process J Non-Cryst Solids 145:44–50

    CAS  Google Scholar 

  27. Tsou P (1995) Silica aerogel captures cosmic dust intact. J Non-Cryst Solids 186:415–427

    Article  CAS  Google Scholar 

  28. De la Rosa-Fox N, Esquivias L, Craievich AF, Zarzycki J (1990) Structural study of silica sonogels. J Non-Cryst Solids 121: 211–15

    Article  Google Scholar 

  29. Zarzycki J (1994) Sonogels. Heterog Chem Rev 1:243–253

    CAS  Google Scholar 

  30. Matson DW, Smith RD (1989) Supercritical fluid technologies for ceramic-processing applications. J Am Ceram Soc 72:871–881

    Article  CAS  Google Scholar 

  31. Pajonk GM (1994) A short history of the preparation of aerogels and carbogels. In: Attia YJ (ed) Sol-Gel Processing and Applications, Plenum Press, New-York, 201–209

    Chapter  Google Scholar 

  32. Livage J, Henry M, Sanchez C (1988) Sol-Gel Chemistry of Transition Metal Oxides. Prog Solid State Chem 18:259–341

    Article  CAS  Google Scholar 

  33. Land VD, Harris TM, Teeters DC (2001) Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non-Cryst Solids 283:11–17

    Article  CAS  Google Scholar 

  34. Zarzycki J, Prassas M, Phalippou J (1982) Synthesis of glasses from gels: the problem of monolithic gels. J Mater Sci 17:3371–3379

    Article  CAS  Google Scholar 

  35. Hench, LL (1986) Use of dying control chemical additives (DCCAs). In controlling sol-gel processing. In: Hench LL, Ulrich DR (eds) Science of Ceramic Chemical Processing, Wiley, New-York, 52–64

    Google Scholar 

  36. Hæreid S, Einarsrud MA, Scherer GW (1994) Mechanical strengthening of TMOS-based alcogels by aging in silane solutions. J Sol-Gel Sci Tech 3:199–204

    Article  Google Scholar 

  37. Schwertfeger F, Glaubitt W, Schubert U (1992) Hydrophobic aerogels from tetramethoxysilane/methyltrimethoxysilane mixtures J Non-Cryst Solids 145:85–89

    Google Scholar 

  38. Smith DM, Stein D, Anderson JM, Ackermann W (1995) Preparation of low-density xerogels at ambient pressure. J Non-Cryst Solids 186:104–112

    Article  CAS  Google Scholar 

  39. Kocklenberg R, Mathieu B, Blacher S, Pirard R, Pirard JP, Sobry R, VandenBossche G (1998) Texture control of freeze-dried resorcinol-formaldehyde gels. J Non-Cryst Solids 225:8–13

    Article  CAS  Google Scholar 

  40. Tretyakov YD, Shlyakhtin OA (1999) Recent progress in cryochemical synthesis of oxide materials. J Mater Chem 9:19–24

    Article  Google Scholar 

  41. Pajonk GM, Repellin-Lacroix M, Abouarnadasse S, Chaouki J, Klvana D (1990) From sol-gel to aerogels and cryogels. J. Non-Cryst. Solids. 121: 66–67

    Article  CAS  Google Scholar 

  42. Fricke J (ed) (1986) Aerogels – Proceedings of the First International Symposium, Wurzburg, FRG, Sept. 23–25, 1985, Springer-Verlag, Berlin

    Google Scholar 

  43. Vacher R, Phalippou J, Pelous J, Woignier T (eds) (1989) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev. Phys. Appl. Colloq, 24–C4

    Google Scholar 

  44. Fricke J (ed) (1992) Proceedings of the Third International Symposium on Aerogels (ISA 3), J Non-Cryst Solids 145

    Google Scholar 

  45. Pekala RW, Hrubesh LW (eds) (1995) Proceedings of the Fourth International Symposium on Aerogels (ISA 4), J Non-Cryst Solids 186

    Google Scholar 

  46. Phalippou J, Vacher R (eds) (1998) Proceedings of the Fifth International Symposium on Aerogels (ISA 5), J Non-Cryst Solids 225

    Google Scholar 

  47. Ashley CS, Brinker CJ, Smith DM (eds) (2001) Aerogels 6. Proceedings of the Sixth International Symposium on Aerogels (ISA6), Albuquerque, NM, USA; 8–11 October 2000. J Non-Cryst Solids 285

    Google Scholar 

  48. Fricke J, Emmerling A (1992) Aerogels – preparation, properties, applications. Struct Bonding (Berlin) 77:37–87

    Article  CAS  Google Scholar 

  49. Fricke J, Emmerling A (1998) Aerogels – Recent progress in production techniques and novel applications. J Sol-Gel Sci Technol 13:299–303

    Article  CAS  Google Scholar 

  50. Burger T, Fricke J (1998) Aerogels: Production, modification and applications. Berichte der Bunsen Gesellschaft Phys Chemi Chem Phys 102:1523–1528

    Article  CAS  Google Scholar 

  51. Hrubesh LW (1998) Aerogel applications. J Non-Cryst Solids 225:335–342

    Article  CAS  Google Scholar 

  52. Schmidt M, Schwertfeger F (1998) Applications for silica aerogel products. J Non-Cryst Solids 225:364–368

    Article  CAS  Google Scholar 

  53. Husing N, Schubert U (1998) Aerogels – Airy materials: Chemistry, structure, and properties. Angew Chem Int Ed 37:23–45

    Article  Google Scholar 

  54. Caps R, Doell G, Fricke J, Heinemann E, Hetfleisch J (1989) Thermal transport in monolithic silica aeroge. In Vacher R, Phalippou J, Pelous J, Woignier T (eds) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev. Phys. Appl. Colloq, 24-C4:113–118

    Google Scholar 

  55. Gronauer M, Kadur A, Fricke J (1986) Mechanical and acoustic properties of silica aeroge. In ISA1 Springer Proc Phys 6:167–173

    Google Scholar 

  56. Pajonk GM (2003) Some applications of silica aerogels. Colloid Polym Sci 38:4407–4413

    Google Scholar 

  57. Venkateswara Rao A, Pajonk GM (2001) Effect of methyltrimethoxysilane as a co-precursor on the optical properties of silica aerogels. J Non-Cryst Solids 285:202–209

    Article  CAS  Google Scholar 

  58. Tscheuschner D, Ratke L (1999) Crystallization of InSb in aerogel crucibles. Cryst Res Technol 34:167–174

    Article  CAS  Google Scholar 

  59. Kim KK, Jang KY (1991) Hollow silica spheres of controlled size and porosity by sol-gel processing. J Am Ceram Soc 74:1987–1992

    Article  CAS  Google Scholar 

  60. Gerlach R, Kraus O, Fricke J, Eccardt PC, Kroemer N, Magori V (1992) Modified silica aerogels as acoustic impedance matching layers in ultrasonic devices. J Non-Cryst.Solids 145:227–232

    Google Scholar 

  61. Forest L, Gibiat V, Woignier T (1998) Biot’s theory of acoustic propagation in porous media applied to aerogels and alcogels. J Non-Cryst Solids 225:287–292

    Article  CAS  Google Scholar 

  62. Woignier T, Phalippou J (1989) Scaling law variation of the mechanical properties of silica aerogels. In Vacher R, Phalippou J, Pelous J, Woignier T (eds) Proceedings of the Second International Symposium on Aerogels (ISA2), Rev. Phys. Appl. Colloq, 24-C4:179–184

    Google Scholar 

  63. LeMay JD, Tillotson TM, Hrubesh LW, Pekala RW (1990) Microstructural dependence of aerogel mechanical properties Mat Res Soc Sym Proc 180:321–324

    Article  CAS  Google Scholar 

  64. Holmes NC, Radousky HB, Moss MJ, Nellis WJ, Henning S (1984) Silica at ultrahigh temperature and expanded volume. Appl Phys Lett 45:626–628

    Article  CAS  Google Scholar 

  65. Guise MT, Hosticka B, Earp BC, Norris PM (1995) An experimental investigation of aerosol collection utilizing packed beds of silica aerogel microspheres. J Non-Cryst Solids 285:317–322

    Article  Google Scholar 

  66. Einasrud MA, Dahle M, Lima S, Hæreid S (1995) Preparation and properties of monolithic silica xerogels from TEOS-based alcogels aged in silane solutions. J Non-Cryst Solids 186:96–103

    Article  Google Scholar 

  67. Lu X, Wang P, Arduini-Schuster MC, Kuhn J, Büttner D, Nilsson O, Heinemann U, Fricke J (1992) Thermal transport in organic and opacified silica monolithic aerogels. J Non-Cryst Solids 145:207–210

    Article  CAS  Google Scholar 

  68. Gesser HD, Goswani PC (1989) Aerogels and related porous materials. Chem Rev 89:765–788

    Article  CAS  Google Scholar 

  69. Emmerling A, Gross J, Gerlach R, Goswin R, Reichenauer G, Fricke J, Haubold HG (1990) Isothermal sintering of silica aerogels. J Non-Cryst Solids 125:230–243

    Article  CAS  Google Scholar 

  70. Aristov YI, Restuccia G, Tokarev MM, Cacciola G (2000) Selective Water Sorbents for Multiple Applications, 10. Energy Storage Ability. React Kineti Catal Lett 69:345–353

    Article  CAS  Google Scholar 

  71. Barral K (1998) Low-density organic aerogels by double-catalysed synthesis. J Non-Cryst Solids 225:46–50

    Article  CAS  Google Scholar 

  72. Venkateswara Rao A, Haranath D, Pajonk GM, Wagh PB (1998) Optimisation of supercritical drying parameters for transparent silica aerogel window applications. Mater Sci Technol 14: 1194–1199

    Article  Google Scholar 

  73. Cantin M, Casse M, Koch L, Jouan R, Mestran P, Roussel D, Bonnin F, Moutel J, Teichner SJ (1974) Silica aerogels used as Cherenkov radiators. Nucl Instrum Methods 118:177–182

    Article  CAS  Google Scholar 

  74. Poelz G, Riethmueller R (1982) Preparation of silica aerogel for Cherenkov counters. Nuc Instr Meth 195:491–503

    Article  CAS  Google Scholar 

  75. Henning S, Svensson L (1981) Production of silica aerogel. Phys Scr 23:697–702

    Article  CAS  Google Scholar 

  76. Nappi E (1998) Aerogel and its applications to RICH detectors. Nucl Phys B Proc Suppl 61B:270–276

    Article  CAS  Google Scholar 

  77. Sumiyoshi T, Adachi I, Enomoto R, Iijima T, Suda R, Yokoyama M, Yokogawa H (1998) Silica aerogels in high energy physics. J Non-Cryst Solids 225:369–374

    Article  CAS  Google Scholar 

  78. Barnyakov MY, Bobrovnikov VS, Buzykaev AR, Danilyuk AF, Ganzhur SF, Goldberg II, Kolachev GM, Kononov SA, Kravchenko EA, Minakov GD, Onuchin AP, Savinov GA, Tayursky VA (2000) Aerogel Cherenkov counters for the KEDR detector. Nucl Instrum Methods Phys Res Sect A 453:326–330

    Article  CAS  Google Scholar 

  79. Sprehn GA, Hrubesh LW, Poco JF, Sandler PH (1997) Aerogel-clad optical fiber. US Patent, US5684 907, Chem Abstr 127, P339050n

    Google Scholar 

  80. Hrubesh LW, Poco JF (1995) Thin aerogel films for optical, thermal, acoustic and electronic applications. J Non-Cryst Solids 188:46–53

    Article  CAS  Google Scholar 

  81. Leventis N, Elder IA, Rolison DR, Anderson ML, Merzbacher CI (1999) Durable Modification of Silica Aerogel Monoliths with Fluorescent 2,7-Diazapyrenium Moieties. Sensing Oxygen near the Speed of Open-Air Diffusion. Chem Mater 11:2837–2845

    CAS  Google Scholar 

  82. Tillotson TM, Sunderland WE, Thomas IM, Hrubesh LW (1994) Synthesis of lanthanide and lanthanide-silicate aerogels. J Sol-Gel Sci Technol 1:241–249

    Article  CAS  Google Scholar 

  83. Passerini S, Coustier F, Giorgetti M, Smyrl WH (1999) Li-Mn-O aerogels. Electrochem Solid-State Lett 2:483–485

    Article  CAS  Google Scholar 

  84. Owens BB, Passerini S, Smyrl WH (1999) Lithium ion insertion in porous metal oxides. Electrochim Acta 45:215–224

    Article  CAS  Google Scholar 

  85. Pekala RW, Farmer JC, Alviso CT, Tran TD, Mayer ST, Miller JM, Dunn B (1998) Carbon aerogels for electrochemical applications. J Non-Cryst Solids 225:74–80

    Article  CAS  Google Scholar 

  86. Miller JM, Dunn B (1999) Morphology and Electrochemistry of Ruthenium/Carbon Aerogel Nanostructures. Langmuir 15:799–806

    Article  CAS  Google Scholar 

  87. Gouerec P, Miousse D, Tran-Van F, Dao LH (1999) Characterization of pyrolyzed polyacrylonitrile aerogel thin films used in double-layer supercapacitors. J New Mater Electrochem Syst 2:221–226

    CAS  Google Scholar 

  88. Woignier T, Reynes J, Phalippou J, Dussossoy JL, Jacquet-Francillon N (1998) Sintered silica aerogel: a host matrix for long life nuclear wastes. J Non-Cryst Solids 225:353–357

    Article  CAS  Google Scholar 

  89. Kawakami N, Fukumoto Y, Kinoshita T, Suzuki K, Inoue K (2000) Preparation of highly porous silica aerogel thin film by supercritical drying. Jpn J Appl Phys Part 2 39:L182–L184

    Article  Google Scholar 

  90. CaoY, Xia ZF, Li Q, Shen J, Chen LY, Zhou B (1998) Study of porous dielectrics as electret materials. IEEE Trans Dielectr Electr Insul 5:58–62

    Article  Google Scholar 

  91. Sinko K, Cser L, Mezei R, Avdeev M, Peterlik H, Trimmel G, Husing N, Fratzl P (2000) Structure investigation of intelligent aerogels. Physica B 276:392–393

    Article  Google Scholar 

  92. Matis G, Juillet F, Teichner SJ (1976) Catalytic oxidation of paraffins on nickel oxide-based catalysts. I. Selectivity in the partial oxidation of isobutane and propane. Bull Soc Chim Fr 1633–1636

    Google Scholar 

  93. Pajonk GM (1991) Aerogel catalysts. Appl Catal 72:217–276

    Article  CAS  Google Scholar 

  94. Willey RJ, Lai H, Peri JB (1991) Investigation of iron oxide-chromia-alumina aerogels for the selective catalytic reduction of nitric oxide by ammonia. J Catal 130:319–331

    Article  CAS  Google Scholar 

  95. Fanelli AJ, Burlew JV, Marsh GB (1989) The polymerization of ethylene over titanium tetrachloride supported on alumina aerogels: low-pressure results. J Catal 116:318–324

    Article  CAS  Google Scholar 

  96. Blanchard F, Pommier B, Reymond JP, Teichner SJ (1983) New Fischer-Tropsch catalysts of the aerogel type. In: Poncelet G, Grange P, Jacobs PA (eds) Studies in Surface Science and Catalysis, vol. 16 Preparation of Catalysts III, Elsevier, Amsterdam, 395–407

    Google Scholar 

  97. Klvana D, Chaouki J, Kusohorski D, Chavarie C, Pajonk GM (1988) Catalytic storage of hydrogen: hydrogenation of toluene over a nickel/silica aerogel catalysts in integral flow conditions. Appl Catal 42:121–130

    Article  CAS  Google Scholar 

  98. Lacroix M, Pajonk G, Teichner SJ (1981) Activation for catalytic reactions of the silica gel by hydrogen spillover. In: Seiyama T, Tanabe K (eds) Studies in Surface Science and Catalysis, vol. 7 New Horizons in Catalysis, Elsevier, Amsterdam, 279–290

    Google Scholar 

  99. Antczak T, Mrowiec-Bialon J, Bielecki S, Jarzebski AB, Malinowski JJ, Lachowski AI, Galas E (1997) Thermostability and esterification activity in silica aerogel matrix and in organic solvents. Biotechnol Techn 11:9–11

    Article  CAS  Google Scholar 

  100. Pierre M, Buisson P, Fache F, Pierre AC (2000) Influence of the drying technique of silica gels on the enzymatic activity of encapsulated lipase. Biocatal Biotransform 18:237–251

    Article  CAS  Google Scholar 

  101. Power M, Hosticka B, Black E, Daitch C, Norris P (2001) Aerogels as biosensors: viral particle detection by bacteria immobilized on large pore aerogel. J Non-Cryst Solids 285:303–308

    Article  CAS  Google Scholar 

  102. Ma J, Kim SB, Hrubesh LW (1993) Phase separation of helium-3-helium-4 mixture in aerogel. J Low Temp Phys 93:945–955

    Article  CAS  Google Scholar 

  103. Roth TB, Anderson AM, Carroll MK (2008) Analysis of a rapid supercritical extraction aerogel fabrication process: Prediction of thermodynamic conditions during processing J. Non-Cryst Solids 354:3685–3693

    Article  CAS  Google Scholar 

  104. de la Rosa-Fox N, Morales-Florez V, Pinero M, Esquivias L (2009) Nanostructured sonogels. Key Eng Mater 391:45–78

    Article  Google Scholar 

  105. Reichenauer G, Manara J, Weinlaeder H (2007) Strong light scattering upon capillary condensation in silica aerogels. Stud Surf Sci Catal 160:25–32

    Article  CAS  Google Scholar 

  106. Bangi Uzma KH, Parvathy Rao A, Hirashima H, Venkateswara RaO A (2009) Physico-chemical properties of ambiently dried sodium silicate based aerogels catalyzed with various acids J Sol-Gel Sci Technol 50:87–97

    Google Scholar 

  107. Baumann TF, Kucheyev SO, Gash AE, Satcher JH Jr (2005) Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Advanced Mater 17:1546–1548

    Article  CAS  Google Scholar 

  108. Chervin CN, Clapsaddle BJ, Chiu HW, Gash AE, Satcher JH Jr, Kauzlarich SM (2005) Aerogel Synthesis of Yttria-Stabilized Zirconia by a Non-Alkoxide Sol-Gel Route Chem Mater 17:3345–3351

    CAS  Google Scholar 

  109. Gash AE, Pantoya M, Satcher JH, Simpson RL (2008) Nanostructured energetic materials: aerogel thermite composites. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 49:558–559

    Google Scholar 

  110. Hund JF, Bertino MF, Zhang G, Sotiriou-Leventis C, Leventis N (2004) Synthesis of homogeneous alloy metal nanoparticles in silica aerogels. J Non-Cryst Solids 350:9–13

    Article  CAS  Google Scholar 

  111. Bertino MF, Gadipalli RR, Story JG, Williams CG, Zhang G, Sotiriou-Leventis C, Tokuhiro AT, Guha S, Leventis N (2004) Laser writing of semiconductor nanoparticles and quantum dots. Appl Phys Letters 85:6007–6009

    Article  CAS  Google Scholar 

  112. Kuthirummal N, Dean A, Yao C, Risen W (2008) Photo-formation of gold nanoparticles: Photoacoustic studies on solid monoliths of Au(III)-chitosan-silica aerogels Spectrochim Acta A: Mol Biomol Spectroscopy 70A:700–703

    Google Scholar 

  113. Venkateswara Rao A, Latthe Sanjay S, Nadargi Digambar Y, Hirashima H, Ganesan V (2009) Preparation of MTMS based transparent superhydrophobic silica films by sol-gel method J Colloid Interf Sci 332:484–490

    Google Scholar 

  114. Mejri I, Younes MK, Ghorbel A (2006) Comparative study of the textural and structural properties of the aerogel and xerogel sulphated zirconia J Sol-Gel Sci Technol 40:3–8

    Google Scholar 

  115. Suzuki Y, Berger M-H, D'Elia D, Ilbizian P, Beauger C, Rigacci A, Hochepied J-F, Achard P (2008) Synthesis and microstructure of a novel TiO2 aerogel-TiO2 nanowire composite NANO 3:373–379

    Google Scholar 

  116. Yao Q, Arachchige IU, Brock SL(2009) Expanding the Repertoire of Chalcogenide Nanocrystal Networks: Ag2Se Gels and Aerogels by Cation Exchange Reactions J Amer Chem Soc 131:2800–2801

    Google Scholar 

  117. Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P(2006) Cellulose-based aerogels. Polymer 47:7636–7645

    Article  CAS  Google Scholar 

  118. Mulik S, Sotiriou-Leventis C, Leventis N (2008) Macroporous Electrically Conducting Carbon Networks by Pyrolysis of Isocyanate-Cross-Linked Resorcinol-Formaldehyde Aerogels Chem Mater 20:6985–6997

    CAS  Google Scholar 

  119. Chevallier T, Woignier, T, Toucet J, Blanchart E, Dieudonne P (2008) Fractal structure in natural gels: effect on carbon sequestration in volcanic soils J Sol-Gel Sci Techno 48:231–238

    CAS  Google Scholar 

  120. Rigacci A, Marechal JC, Repoux M, Moreno M, Achard P (2004) Preparation of polyurethane-based aerogels and xerogels for thermal superinsulation. J Non-Cryst Solids 350:372–378

    Article  CAS  Google Scholar 

  121. Luo H, Churu G, Fabrizio EF, Schnobrich J, Hobbs A, Dass A, Mulik S, Zhang Y, Grady BP, Capecelatro A, et al (2008) Synthesis and characterization of the physical, chemical and mechanical properties of isocyanate-crosslinked vanadia aerogels. J Sol-Gel Sci Technol 48:113–134

    Article  CAS  Google Scholar 

  122. Leventis N, Chandrasekaran N, Sadekar A, Sotiriou-Leventis C, Lu H (2009) One-Pot Synthesis of Interpenetrating Inorganic/Organic Networks of CuO/Resorcinol-Formaldehyde Aerogels: Nanostructured Energetic Materials J Amer Chem Soc 131:4576–4577

    Google Scholar 

  123. Meador MAB, Weber AS, Hindi A, Naumenko M, McCorkle L, Quade D, Vivod SL, Gould GL, White S, Deshpande K (2009) Structure-Property Relationships in Porous 3D Nanostructures: Epoxy-Cross-Linked Silica Aerogels Produced Using Ethanol as the Solvent Appl Mater Interfaces 1:894–906

    Google Scholar 

  124. Nguyen BN, Meador MAB, Tousley ME, Shonkwiler B, McCorkle L, Scheiman DA, Palczer A (2009) Tailoring Elastic Properties of Silica Aerogels Cross-Linked with Polystyrene. Appl Mater Interfaces 1:621–630

    Article  CAS  Google Scholar 

  125. Lu H, Luo H, Mulik S, Sotiriou-Leventis C, Leventis N (2008) Compressive behavior of crosslinked mesoporous silica aerogels at high strain rates Polymer Preprints (Amer Chem Soc) 49:515–516

    CAS  Google Scholar 

  126. Gelb LD (2007) Simulating Silica Aerogels with a Coarse-Grained Flexible Model and Langevin Dynamics J Phys Chem C 111:15792–1580

    CAS  Google Scholar 

  127. Morales-Florez V, Toledo-Fernandez JA, Rosa-Fox N, Pinero M, Esquivias L (2009) Percolation of the organic phase in hybrid organic-inorganic aerogels J Sol-Gel Sci Technol 50:170–175

    Article  CAS  Google Scholar 

  128. Baudrin E, Sudant G, Larcher D, Dunn B, Tarascon J-M (2006) Preparation of Nanotextured VO2[B] from Vanadium Oxide Aerogels. Chem Mater 18:4369–4374

    Article  CAS  Google Scholar 

  129. Carpenter EE, Long JW, Rolison DR, Logan MS, Pettigrew K, Stroud RM, Kuhn LT, Hansen BR, Moerup S(2006) Magnetic and Mossbauer spectroscopy studies of nanocrystalline iron oxide aerogels. J Appl Phys 99:08N711/1-08N711/3

    Google Scholar 

  130. Drach V, Wiener M, Reichenauer G, Ebert H.-P, Fricke J (2007) Determination of the Anisotropic Thermal Conductivity of a Carbon Aerogel-Fiber Composite by a Non-contact Thermographic Technique. Internat J Thermophys 28:1542–1562

    Article  CAS  Google Scholar 

  131. Woignier T, Primera J, Lamy M, Fehr C, Anglaret E, Sempere R, Phalippou J (2004) The use of silica aerogels as host matrices for chemical species. J Non-Cryst Solids 350:299–307

    Article  CAS  Google Scholar 

  132. Santos A, Ajbary M, Toledo-Fernandez JA, Morales-Florez V, Kherbeche A; Esquivias L (2008) Reactivity of CO2 traps in aerogel-wollastonite composites J Sol-Gel Sci Technol 48:224–230

    Google Scholar 

  133. Latthe Sanjay S, Nadargi Digambar Y, Venkateswara Rao A (2009) TMOS based water repellent silica thin films by co-precursor method using TMES as a hydrophobic agent. Appl Surf Sci 255:3600–3604

    Article  CAS  Google Scholar 

  134. Plata DL, Briones YJ, Wolfe RL, Carroll MK, Bakrania SD, Mandel SG, Anderson AM (2004) Aerogel-platform optical sensors for oxygen gas. J Non-Cryst Solids 350:326–335

    Article  CAS  Google Scholar 

  135. Bali S, Huggins FE, Huffman GP, Ernst RD, Pugmire RJ, Eyring EM (2009) Iron Aerogel and Xerogel Catalysts for Fischer-Tropsch Synthesis of Diesel Fuel Energy & Fuels 23:14–18

    CAS  Google Scholar 

  136. Gasser-Ramirez JL, Dunn BC, Ramirez DW, Fillerup EP, Turpin GC, Shi Y, Ernst RD, Pugmire RJ, Eyring EM, Pettigrew KA, et al. (2008) A simple synthesis of catalytically active, high surface area ceria aerogels. J Non-Cryst Solids 354:5509–5514

    Article  CAS  Google Scholar 

  137. Steinbach S, Ratke L (2007) The microstructure response to fluid flow fields in Al-cast alloys Trans Indian Inst Metals 60:167–171

    CAS  Google Scholar 

  138. Nagahara H, Suginouchi T, Hashimoto M (2006) Acoustic properties of nanofoam and its applied air-borne ultrasonic transducers. Proc IEEE Ultrason Symp 3:1541–1544

    Google Scholar 

  139. Long JW, Fischer AE, McEvoy TM, Bourg ME, Lytle JC, Rolison DR (2008) Self-limiting electropolymerization en route to ultrathin, conformal polymer coatings for energy storage applications. PMSE Preprints (2008), 99, 772–773

    CAS  Google Scholar 

  140. Guenther U, Smirnova I, Neubert RH H (2008) Hydrophilic silica aerogels as dermal drug delivery systems – Dithranol as a model drug. Eur Jo Pharmac Biopharmac 69:935–942

    Article  CAS  Google Scholar 

  141. Begag R, Fesmire JE, Sonn JH (2008) Nonflammable, hydrophobic aerogel composites for cryogenic applications. Thermal Cond 29:323–333

    CAS  Google Scholar 

  142. Nakagawa H, Kado R, Obara K, Yano H, Ishikawa O, Hata T, Yokogawa H, Yokoyama M (2007) Equal-spin-pairing superfluid phase of 3He in an aerogel acting as an impurity Phys Rev B: Condensed Matter Mater Phys 76:172504/1-172504/4

    Google Scholar 

  143. Bauer U, Darsillo MS, Field RJ, Floess JK, Frundt J, Rouanet S, Doshi DA (2008) Aerogel particles and methods of making same PCT Pat. Int. Appl., WO 2008115812 A2 20080925

    Google Scholar 

  144. Albert DF, Andrews GR, Bruno JW (2002) Organic, open cell foam materials, their carbonized derivatives and methods for production. U.S. Pat. Appl. Publ. US 2002064642

    Google Scholar 

  145. Augustyniak MJ, Hamilton KP, Kalkstein HC (2008) Manufacture of architectural membrane structures based on aerogel-containing 3-ply composites U.S. Pat. Appl. Publ. US 2008229704 A1 20080925

    Google Scholar 

  146. Lee JK, Gould GL, Rhine W (2009) Polyurea based aerogel for a high performance thermal insulation material J Sol-Gel Sci Technol 49:209–220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is very grateful to researchers in the Mines ParisTech centers, France, and in particular to Berthon-Fabry Sandrine, Rigacci A, and Berger M-H for providing photographs of aerogels included in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain C. Pierre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pierre, A.C. (2011). History of Aerogels. In: Aegerter, M., Leventis, N., Koebel, M. (eds) Aerogels Handbook. Advances in Sol-Gel Derived Materials and Technologies. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7589-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7589-8_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7477-8

  • Online ISBN: 978-1-4419-7589-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics