Skip to main content

Voronoi Diagrams and Their Uses

  • Chapter
  • First Online:
Foundations of Location Analysis

Abstract

Voronoi diagrams are a very simple geometrical construct with a large variety of applications. Simply put, the problem can be described as follows. Consider some d-dimensional space in which a number of given points (sometimes referred to as seeds, attractors, or generators) are located. To each seed we assign a set that includes all points that are closer to the seed it is assigned to than to any other seed. Such a set is called a Voronoi set. The collection of all Voronoi sets is then a Voronoi diagram. Voronoi diagrams can be constructed for a number of different metrics. Clearly, different metrics will lead to different measures of proximity that result in rather different Voronoi diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aspinwall M (2002) Preferring Europe. Eur Union Polit 3:81–111

    Article  Google Scholar 

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Comput Surv 23:345–405

    Article  Google Scholar 

  • Aurenhammer F, Klein R (1996) Voronoi diagrams. http://www.pi6.fernuni-hagen.de/publ/tr198.pdf. Accessed 21 Aug 2009

  • Bower JA, Whitten R (2000) Sensory characteristics and consumer liking for cereal bar snack foods. J Sens Stud 15:327–345

    Article  Google Scholar 

  • Brimberg J, Dowling PD, Love RF (1994) The weighted one-two norm distance model: empirical validation and confidence interval estimation. Locat Sci 2:91–100

    Google Scholar 

  • De Berg, M, Cheong O, van Kreveld M, Overmars M (2008) Computational geometry: algorithms and applications, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Delauney B (1934) Sur la sphère vide. Bulleting of the academy of sciences of the U.S.S.R. Cl Sci Math Nat, Ser 7:793–800

    Google Scholar 

  • Dirichlet GL (1850) Über die Reduktion der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. Z Rein Angew Math 40:209–227

    Google Scholar 

  • Drezner T, Drezner Z, Eiselt HA (1996) Consistent and inconsistent rules in competitive facility choice. J Oper Res Soc 47:1494–1503

    Article  Google Scholar 

  • Eiselt HA (1989) Modeling business problems with Voronoi diagrams. Can J Adm Sci 6:43–53

    Article  Google Scholar 

  • Eiselt HA, Pederzoli G, Sandblom C-L (1985) On the location of a new service facility in an urban area. In Bartel H (ed) Proceedings of the administrative sciences association of Canada 6/9, Montreal, pp 42–55

    Google Scholar 

  • Fernández J, Fernández P, Pelegrin B (2002) Estimating actual distances by norm functions: comparison between the k, p, θ-norm and the b1, b2, θ-norm and a study about the selection of the data set. Comput Oper Res 29:609–623

    Article  Google Scholar 

  • Fortune SA (1987) A sweepline algorithm for Voronoi diagrams. Algorithmica 2:153–174

    Article  Google Scholar 

  • Francis RL, McGinnis LF, White JA (1994) Facility layout and location: an analytical approach. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gauss CF (1840) Recursion der “Untersuchungen über die Eigenschaften der positive ternären quadratischen Formen” von Ludwig August Seeber. Z Rein Angew Math 20:312–320

    Google Scholar 

  • Gini C (1921) Measurement of inequality of incomes. Econ J 31:124–126

    Article  Google Scholar 

  • Gold CM (1989) Surface interpolation, spatial adjacency and GIS. In: Raper J (ed) Three dimensional applications in geographical information systems. Taylor & Francis, London. http://www.voronoi.com/wiki/images/9/93/Chapter3-Surface_interpolation%2Cspatial_adjacency.pdf. Accessed 21 Aug 2009 (Chapter 3)

  • Herfindahl OC (1950) Concentration in the U.S. steel industry. Unpublished dissertation, Columbia University, New York

    Google Scholar 

  • Hirschman AO (1945) National power and the structure of foreign trade. University of California Press, Berkeley, CA

    Google Scholar 

  • Hirschman AO (1964) The paternity of an index. Am Econ Rev 54:761

    Google Scholar 

  • Horton RE (1917) Rational study of rainfall data makes possible better estimates of water yield. Eng News-Rec 79:211–213

    Google Scholar 

  • Hotelling H (1929) Stability in competition. Econ J 39:41–57

    Article  Google Scholar 

  • Huff DL (1964) Defining and estimating a trading area. J Mark 28:34–38

    Article  Google Scholar 

  • Hwang FK (1979) An O(n log n) Algorithm for rectilinear minimal spanning trees. J ACM 26:177–182

    Article  Google Scholar 

  • Johnson WA, Mehl RF (1939) Reaction kinetics in processes of nucleation and growth. Trans AIMME 135:416–458

    Google Scholar 

  • Krugman P (1980) Scale economies, product differentiation, and the pattern of trade. Am Econ Rev 70:950–959

    Google Scholar 

  • Larson RC, Stevenson KA (1972) On insensitivities in urban redistricting and facility location. Oper Res 20:595–612

    Article  Google Scholar 

  • Lee DT, Yang CC (1979) Location of multiple points in a planar subdivision. Inf Proc Lett 9:190–193

    Article  Google Scholar 

  • Lorenz MO (1905) Methods of measuring the concentration of wealth. Pub Am Statist Assoc 9:209–219

    Google Scholar 

  • Lösch A (1962) Die räumliche Ordnung der Wirtschaft, 3rd edn. Fischer, Stuttgart (1st edn published in 1940)

    Google Scholar 

  • Love RF, Morris JG (1979) Mathematical models of road travel distances. Manag Sci 25:130–139

    Article  Google Scholar 

  • Martin R, Sunley P (1996) Paul Krugman’s geographical economics and its implications for regional development theory: a critical assessment. Econ Geogr 72:259–292

    Article  Google Scholar 

  • Nationalatlas (2008) http://nationalatlas.gov/mld/urbanap.html. Accessed 21 Aug 2009

  • Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin

    Google Scholar 

  • Niggli R (1927) Die topologische Strukturanalyse. Z Kristallogr, Kristall-geom, Kristallphys, Kristallchem 65:391–415

    Google Scholar 

  • Okabe A, Suzuki A (1987) Stability of spatial competition for a large number of firms on a bounded two-dimensional space. Environ Plan A 19:1067–1082

    Article  Google Scholar 

  • Okabe A, Boots B, Sugihara K, Chiu S-N (2000) Spatial tessellations: concepts and applications of Voronoi diagrams, 2nd edn. Wiley, Chichester

    Book  Google Scholar 

  • Preparata F, Shamos MI (1985) Computational geometry. Springer, New York

    Book  Google Scholar 

  • Reilly WJ (1931) The law of retail gravitation, 2nd edn. Pilsbury, New York

    Google Scholar 

  • Rydell CP (1967) A note on a location principle: between the median and the mode. J Reg Sci 7:185–192

    Article  Google Scholar 

  • Shamos MI, Hoey D (1975) Closest point problems. Proceedings of the 16th annual symposium on Foundations of Computer Science, pp 151–162

    Google Scholar 

  • Shaw RW (1982) Product proliferation in characteristics space: the UK fertilizer industry. J Ind Econ 31:69–91

    Article  Google Scholar 

  • Shute GM, Deneen LL, Thomborson CD (1987) An O(n log n) plane-sweep algorithm for 1 and ℓ Delaunay triangulations. Technical report 87-5, computer science and mathematics, University of Minnesota Duluth

    Google Scholar 

  • Thiessen AH (1911) Precipitation averages for large areas. Mon Weather Rev 39:1082–1084

    Article  Google Scholar 

  • Voronoi G (1908) Nouvelles applications des parameters continus à la théorie des forms quadratiques, deuxième mémoire, recherché sur les paralleloèdres primitifs. Z Rein Angew Math 134:198–287

    Article  Google Scholar 

  • Whitney EN (1929) Area rainfall estimates. Mon Weather Rev 57:462–463

    Article  Google Scholar 

  • Wigner E, Seitz F (1933) On the constitution of metallic sodium. Phys Rev 43:804–810

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by a grant from the Natural Sciences and Engineering Research Council of Canada. This support is gratefully acknowledged. The authors would also like to thank Professor Vladimir Marianov for his assistance with the Thiessen reference and for providing some of the figures in this paper. Thanks also to our assistant #21 (Courtney Palmer) for providing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Burkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Burkey, M.L., Bhadury, J., Eiselt, H.A. (2011). Voronoi Diagrams and Their Uses. In: Eiselt, H., Marianov, V. (eds) Foundations of Location Analysis. International Series in Operations Research & Management Science, vol 155. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7572-0_19

Download citation

Publish with us

Policies and ethics