Advertisement

Probabilistic Error Propagation in a Logic Circuit Using the Boolean Difference Calculus

Chapter

Abstract

A gate-level probabilistic error propagation model is presented which takes as input the Boolean function of the gate, input signal probabilities, the error probability at the gate inputs, and the gate error probability and generates the error probability at the output of the gate. The presented model uses the Boolean difference calculus and can be efficiently applied to the problem of calculating the error probability at the primary outputs of a multilevel Boolean circuit with a time complexity which is linear in the number of gates in the circuit. This is done by starting from the primary inputs and moving toward the primary outputs by using a post-order – reverse Depth First Search (DFS ) – traversal. Experimental results demonstrate the accuracy and efficiency of the proposed approach compared to the other known methods for error calculation in VLSI circuits.

Keywords

Monte Carlo Boolean Function Logic Circuit Soft Error Primary Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krishnaswamy, S.: Design, analysis, and test of logic circuits under uncertainty. Dissertation, University of Michigan at Ann Arbor (2008).Google Scholar
  2. 2.
    Rabey, J.M., Chankrakasan, A., Nikolic, B.: Digital Integrated Circuits. Prentice Hall, pp. 445–490 (2003).Google Scholar
  3. 3.
    Hu, C. Silicon nanoelectronics for the 21st century. Nanotechnology 10(2), 113–116 (1999).CrossRefGoogle Scholar
  4. 4.
    Bahar, R.I., Lau, C., Hammerstrom, D., Marculescu, D., Harlow, J., Orailoglu, A., Joyner, W.H. Jr., Pedram, M.: Architectures for silicon nanoelectronics and beyond. Computer 40(1), 25–33 (2007).CrossRefGoogle Scholar
  5. 5.
    Krishnaswamy, S., Viamontes, G.F., Markov, I.L., Hayes, J.P.: Accurate reliability evaluation and enhancement via probabilistic transfer matrices. Proceedings of Design, Automation and Test in Europe (DATE), pp. 282–287 (2005).Google Scholar
  6. 6.
    Abdollahi, A. Probabilistic decision diagrams for exact probabilistic analysis. Proceedings of International Conference on Computer Aided Design (ICCAD) (2007).Google Scholar
  7. 7.
    Mehta, H., Borah, M., Owens, R.M., Irwin, M.J.: Accurate estimation of combinational circuit activity. Proceedings of the Design Automation Conference, (DAC), pp. 618–622 (1995).Google Scholar
  8. 8.
    Bhaduri, D., Shukla, S.: NANOPRISM: A tool for evaluating granularity versus reliability trade-offs in nano architectures. In: Proceedings of 14th ACM Great Lakes Symposium VLSI, pp. 109–112. (2004).Google Scholar
  9. 9.
    Norman G, Parker D, Kwiatkowska M, Shukla, S.: Evaluating the reliability of NAND multiplexing with PRISM. IEEE Transactions on Computer-Aided Design Integrated Circuits System24(10), 1629–1637 (2005).CrossRefGoogle Scholar
  10. 10.
    Bhaduri, D., Shukla, S.K., Graham, P.S., Gokhale, M.B.: Reliability analysis of large circuits using scalable techniques and tools. IEEE Transactions on Circuits and Systems 54(11), 2447–2460 (2007).CrossRefMathSciNetGoogle Scholar
  11. 11.
    Sellers, F.F., Hsiao, M.Y., Bearnson, L.W.: Analyzing errors with the boolean difference. IEEE Transactions on Computers 17(7), 676–683 (1968).MATHCrossRefGoogle Scholar
  12. 12.
    Akers, S.B. Jr. (1959) On the theory of Boolean functions. SIAM Journal on Applied Mathematics 7, 487–498MATHCrossRefGoogle Scholar
  13. 13.
    Ku, C.T., Masson, G.M.: The Boolean difference and multiple fault analysis. IEEE Transactions on Computers c-24, 62–71 (1975).CrossRefMathSciNetGoogle Scholar
  14. 14.
    Das, S.R., Srimani, P.K., Dutta, C.R.: On multiple fault analysis in combinational circuits by means of boolean difference. Proceedings of the IEEE 64(9), 1447–1449 (1976).Google Scholar
  15. 15.
    Rejimon, T., Bhanja, S.: An accurate probabilistic model for error detection. Proceedings of 18th International Conference on VLSI Design, pp. 717–722. (2005).Google Scholar
  16. 16.
    Ercolani, S., Favalli, M., Damiani, M., Olivo, P., Ricco, B.: Testability measures in pseudorandom testing. IEEE Transactions on CAD 11, 794–800 (1992).Google Scholar
  17. 17.
    Marculescu, R., Marculescu, D., Pedram, M.: Probabilistic modeling of dependencies during switching activity analysis. IEEE Transactions on Computer Aided Design 17(2), 73–83 (1998).CrossRefGoogle Scholar
  18. 18s.
    Parker, K.P., McCluskey, E.J.: Probabilistic treatment of general combinational networks. IEEE Transactions on Computers 24(6), 668–670 (1975)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Han, J., Gao, J.B., Jonker, P., Qi, Y., Fortes, J.A.B.: Toward hardware-redundant fault-tolerant logic for nanoelectronics. IEEE Transactions on Design and Test of Computers 22–24 328–339 (2005).CrossRefGoogle Scholar
  20. 20.
    Sentovich, E.M., Singh, K.J., Lavagno, L., Moon, C., Murgai, R., Saldanha, A., Savoj, H., Stephan, P.R., Brayton, R.K., SangiovanniVincentelli, A.: SIS: A system for sequential circuit synthesis,“ U.C. Berkeley, Technical Report, (1992).Google Scholar
  21. 21.
    Li, L., Degalahal, V., Vijaykrishnan, N., Kandemir, M., Irwin, M.J.: Soft error and energy consumption interactions: A data cache perspective. In: Proceedings of the international symposium on low power electronics and design ISPLD’04 (2004).Google Scholar
  22. 22.
    Lent, C.S., Tougaw, P.D., Porod, W., Bernstein, G.H.: Quantum cellular automata. Nanotechnology 4, 49–57 (1993).CrossRefGoogle Scholar
  23. 23.
    Rejimon, T., Bhanja, S.: Probabilistic error model for unreliable nano-logic gates. In: Proceedings NANO, 47–50 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nasir Mohyuddin
    • 1
    • 2
  • Ehsan Pakbaznia
    • 2
  • Massoud Pedram
    • 2
  1. 1.Department of Electrical Engineering – SystemsUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Department of Electrical Engineering – SystemsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations