Skip to main content

Dentability and Differentiability

  • Chapter
  • First Online:
  • 4237 Accesses

Part of the book series: CMS Books in Mathematics ((CMSBM))

Abstract

The main topic of the present chapter is the dentability of bounded sets and the closely related Radon–Nikodým property (RNP) of Banach spaces. This property has several equivalent characterizations and applications. In particular, Asplund spaces are characterized by the Radon–Nikodým property of their dual spaces. As another application, we show that Lipschitz mappings from separable Banach spaces into Banach spaces with RNP are at some points Gâteaux differentiable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A.D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Učenye Zapiski Leningrad. Univ. 6 (1939), 3–35.

    Google Scholar 

  2. S. Argyros and S. Mercourakis, On weakly Lindelöf Banach spaces, Rocky Mount. J. Math. 23 (1993), 395–446.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Aronszajn, Differentiability of Lipschitz mappings between Banach spaces, Studia Math. 57 (1976), 147–190.

    MATH  MathSciNet  Google Scholar 

  4. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, Colloquium Publications 48, American Mathematical Society, 2000.

    Google Scholar 

  5. J. Borwein and D. Noll, Second order differentiability of convex functions: A.D. Alexandrov’s theorem in Hilbert space, Trans. Amer. Math. Soc. 342 (1994), 43–81.

    Article  MATH  MathSciNet  Google Scholar 

  6. J. Borwein and J. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples. Encyclopedia of Mathematics and Its Applications 109, Cambridge University Press, 2009.

    Google Scholar 

  7. J. Bourgain, On dentability and the Bishop–Phelps property, Israel J. Math. 28 (1976), 265–271.

    Article  MathSciNet  Google Scholar 

  8. J. Bourgain and H.P. Rosenthal, Martingales-valued in certain subspaces of L 1, Israel J. Math. 37 (1980), 55–76.

    MathSciNet  Google Scholar 

  9. R. Bourgin, Geometric aspects of convex sets with the Radon–Nikodým property, Lecture Notes in Mathematics 93, Springer, 1983.

    Google Scholar 

  10. J.M.F. Castillo and M. González, Three space problems in Banach space theory, Lecture Notes in Mathematics 1667, Springer, 1997.

    Google Scholar 

  11. P.R. Christensen, Measure theoretic zero sets in infinite-dimensional spaces and applications to differentiability of Lipschitz mappings II, Publ. Dep. Math. Lyon 109 (1973), 29–39.

    Google Scholar 

  12. W.J. Davis and R.R. Phelps, The Radon–Nikodým property and dentable sets in Banach spaces, Proc. Amer. Math. Soc. 45 (1974), 119–122.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs 64, London, Logman, 1993.

    Google Scholar 

  14. J. Diestel and J. Uhl, Vector measures, Mathematical Surveys 15, American Mathematical Society, 1977.

    Google Scholar 

  15. D. van Dulst and I. Namioka, A note on trees in conjugate Banach spaces, Indag. Math. 87 (1984), 7–10.

    Google Scholar 

  16. N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.

    Google Scholar 

  17. M. Fabian and C. Finet, On Stegall’s smooth variational principle, Nonlinear Anal., Theory, Methods, Appl. 66 (2007), 565–570.

    Article  MATH  MathSciNet  Google Scholar 

  18. M. Fabian, P. Habala, P. Hájek, J. Pelant, V. Montesinos, and V. Zizler, Functional analysis and infinite-dimensional geometry, Canadian Mathematical Society Books in Mathematics, No. 8, Springer, New York, 2001.

    MATH  Google Scholar 

  19. M. Fabian and V. Zizler, An elementary approach to some problems in higher order smoothness in Banach spaces, Extracta Math. 14 (1999), 295–327.

    MATH  MathSciNet  Google Scholar 

  20. H. Federer, Geometric measure theory, Classics in Mathematics, Springer, 1996.

    Google Scholar 

  21. N. Ghoussoub and B. Maurey, \(G_\delta\)-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72–97.

    Article  MATH  MathSciNet  Google Scholar 

  22. N. Ghoussoub and B. Maurey, A nonlinear method for constructing certain basic sequences in Banach spaces, Illnois J. Math. 34 (1990), 607–613.

    MATH  MathSciNet  Google Scholar 

  23. R. Haydon, A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261–268.

    Article  MATH  MathSciNet  Google Scholar 

  24. R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541–584.

    Article  MATH  MathSciNet  Google Scholar 

  25. R.E. Huff, Dentability and the Radon Nikodým property, Duke Math. J. 41 (1974), 111–114.

    Article  MATH  MathSciNet  Google Scholar 

  26. R.E. Huff and P.D. Morris, Dual spaces with the Krein–Milman property have the Radon–Nikodým property, Proc. Amer. Math. Soc. 49 (1975), 104–108.

    MATH  MathSciNet  Google Scholar 

  27. R.E. Huff and P.D. Morris, Geometric characterizations of the Radon–Nikodým property in Banach spaces, Studia Math. 56 (1976), 157–164.

    MATH  MathSciNet  Google Scholar 

  28. P. Kenderov, Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci. 30 (1977), 963–964.

    MATH  MathSciNet  Google Scholar 

  29. J. Lindenstrauss, On operators which attain their norms, Israel J. Math. 3 (1963), 139–148.

    Article  MathSciNet  Google Scholar 

  30. J. Lukeš and J. Malý, Measure and integral, Matfyzpress, Prague 1994.

    Google Scholar 

  31. P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. XLV, (1973), 15–29.

    MathSciNet  Google Scholar 

  32. H.B. Maynard, A geometrical characterization of Banach spaces with the Radon-Nikodým property, Trans. Amer. Math. Soc. 185 (1973), 493–500.

    Article  MathSciNet  Google Scholar 

  33. P.W. McCartney and R.C. O’Brian, A separable space with the Radon–Nikodým property that is not isomorphic to a subspace of a separable dual, Proc. Amer. Math. Soc. 78 (1980), 40–42.

    MATH  MathSciNet  Google Scholar 

  34. I. Namioka and R.R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1968), 735–750.

    Article  MathSciNet  Google Scholar 

  35. A. Nekvinda and L. Zajíček, A simple proof of Rademacher theorem, Časopis pro pěstování matematiky 113 (1988), 337–341.

    MATH  Google Scholar 

  36. R.R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78–90.

    Article  MATH  MathSciNet  Google Scholar 

  37. R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364, Springer, 1989.

    Google Scholar 

  38. D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202–204.

    MATH  MathSciNet  Google Scholar 

  39. S. Quian, Nowhere differentiable Lipschitz maps and the Radon–Nikodým property, J. Math. Anal. Appl. 185 (1994), 613–616.

    Article  MathSciNet  Google Scholar 

  40. M.A. Rieffel, The Radon–Nikodým theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466–487.

    Article  MATH  MathSciNet  Google Scholar 

  41. R.T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincare, Anal. Non Lin. 2 (1985), 167–184.

    MATH  MathSciNet  Google Scholar 

  42. W. Rudin, Real and complex analysis, McGraw Hill, New York, 1974.

    MATH  Google Scholar 

  43. W. Schachermayer, A. Sersouri, and E. Werner, Moduli of non-dentability and the Radon-Nikodým property in Banach spaces, Israel J. Math. 65 (1989), 225–257.

    Article  MATH  MathSciNet  Google Scholar 

  44. C. Stegall, The Radon–Nikodým property in conjugate spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223.

    Article  MATH  MathSciNet  Google Scholar 

  45. C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), 171–176.

    Article  MATH  MathSciNet  Google Scholar 

  46. C. Stegall, Optimization and differentiability in Banach spaces, J. Linear Algebra Appl. 84 (1986), 191–211.

    Article  MATH  MathSciNet  Google Scholar 

  47. S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173–180.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Fabian .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Fabian, M., Habala, P., Hájek, P., Montesinos, V., Zizler, V. (2011). Dentability and Differentiability. In: Banach Space Theory. CMS Books in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7515-7_11

Download citation

Publish with us

Policies and ethics