Dentability and Differentiability

  • Marián Fabian
  • Petr Habala
  • Petr Hájek
  • Vicente Montesinos
  • Václav Zizler
Chapter
Part of the CMS Books in Mathematics book series (CMSBM)

Abstract

The main topic of the present chapter is the dentability of bounded sets and the closely related Radon–Nikodým property (RNP) of Banach spaces. This property has several equivalent characterizations and applications. In particular, Asplund spaces are characterized by the Radon–Nikodým property of their dual spaces. As another application, we show that Lipschitz mappings from separable Banach spaces into Banach spaces with RNP are at some points Gâteaux differentiable.

Keywords

Porosity Hull Radon NaPh Corson 

References

  1. [Alex]
    A.D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Učenye Zapiski Leningrad. Univ. 6 (1939), 3–35.Google Scholar
  2. [ArMe1]
    S. Argyros and S. Mercourakis, On weakly Lindelöf Banach spaces, Rocky Mount. J. Math. 23 (1993), 395–446.CrossRefMATHMathSciNetGoogle Scholar
  3. [Aro]
    N. Aronszajn, Differentiability of Lipschitz mappings between Banach spaces, Studia Math. 57 (1976), 147–190.MATHMathSciNetGoogle Scholar
  4. [BeLi]
    Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Vol. 1, Colloquium Publications 48, American Mathematical Society, 2000.Google Scholar
  5. [BoNo]
    J. Borwein and D. Noll, Second order differentiability of convex functions: A.D. Alexandrov’s theorem in Hilbert space, Trans. Amer. Math. Soc. 342 (1994), 43–81.CrossRefMATHMathSciNetGoogle Scholar
  6. [BoVa]
    J. Borwein and J. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples. Encyclopedia of Mathematics and Its Applications 109, Cambridge University Press, 2009.Google Scholar
  7. [Bou]
    J. Bourgain, On dentability and the Bishop–Phelps property, Israel J. Math. 28 (1976), 265–271.CrossRefMathSciNetGoogle Scholar
  8. [BoRo]
    J. Bourgain and H.P. Rosenthal, Martingales-valued in certain subspaces of L 1, Israel J. Math. 37 (1980), 55–76.MathSciNetGoogle Scholar
  9. [Bour]
    R. Bourgin, Geometric aspects of convex sets with the Radon–Nikodým property, Lecture Notes in Mathematics 93, Springer, 1983.Google Scholar
  10. [CasGon]
    J.M.F. Castillo and M. González, Three space problems in Banach space theory, Lecture Notes in Mathematics 1667, Springer, 1997.Google Scholar
  11. [Chri]
    P.R. Christensen, Measure theoretic zero sets in infinite-dimensional spaces and applications to differentiability of Lipschitz mappings II, Publ. Dep. Math. Lyon 109 (1973), 29–39.Google Scholar
  12. [DaPh]
    W.J. Davis and R.R. Phelps, The Radon–Nikodým property and dentable sets in Banach spaces, Proc. Amer. Math. Soc. 45 (1974), 119–122.CrossRefMATHMathSciNetGoogle Scholar
  13. [DGZ3]
    R. Deville, G. Godefroy, and V. Zizler, Smoothness and renormings in Banach spaces, Pitman Monographs 64, London, Logman, 1993.Google Scholar
  14. [DiUh]
    J. Diestel and J. Uhl, Vector measures, Mathematical Surveys 15, American Mathematical Society, 1977.Google Scholar
  15. [DuNa]
    D. van Dulst and I. Namioka, A note on trees in conjugate Banach spaces, Indag. Math. 87 (1984), 7–10.Google Scholar
  16. [DuSc]
    N. Dunford and J.T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.Google Scholar
  17. [FabFin]
    M. Fabian and C. Finet, On Stegall’s smooth variational principle, Nonlinear Anal., Theory, Methods, Appl. 66 (2007), 565–570.CrossRefMATHMathSciNetGoogle Scholar
  18. [FHHMPZ]
    M. Fabian, P. Habala, P. Hájek, J. Pelant, V. Montesinos, and V. Zizler, Functional analysis and infinite-dimensional geometry, Canadian Mathematical Society Books in Mathematics, No. 8, Springer, New York, 2001.MATHGoogle Scholar
  19. [FaZi2]
    M. Fabian and V. Zizler, An elementary approach to some problems in higher order smoothness in Banach spaces, Extracta Math. 14 (1999), 295–327.MATHMathSciNetGoogle Scholar
  20. [Fede]
    H. Federer, Geometric measure theory, Classics in Mathematics, Springer, 1996.Google Scholar
  21. [GhMa1]
    N. Ghoussoub and B. Maurey, \(G_\delta\)-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72–97.CrossRefMATHMathSciNetGoogle Scholar
  22. [GhMa2]
    N. Ghoussoub and B. Maurey, A nonlinear method for constructing certain basic sequences in Banach spaces, Illnois J. Math. 34 (1990), 607–613.MATHMathSciNetGoogle Scholar
  23. [Hayd1]
    R. Haydon, A counterexample to several questions about scattered compact spaces, Bull. London Math. Soc. 22 (1990), 261–268.CrossRefMATHMathSciNetGoogle Scholar
  24. [Hayd3]
    R. Haydon, Trees in renorming theory, Proc. London Math. Soc. 78 (1999), 541–584.CrossRefMATHMathSciNetGoogle Scholar
  25. [Hu]
    R.E. Huff, Dentability and the Radon Nikodým property, Duke Math. J. 41 (1974), 111–114.CrossRefMATHMathSciNetGoogle Scholar
  26. [HuMo1]
    R.E. Huff and P.D. Morris, Dual spaces with the Krein–Milman property have the Radon–Nikodým property, Proc. Amer. Math. Soc. 49 (1975), 104–108.MATHMathSciNetGoogle Scholar
  27. [HuMo2]
    R.E. Huff and P.D. Morris, Geometric characterizations of the Radon–Nikodým property in Banach spaces, Studia Math. 56 (1976), 157–164.MATHMathSciNetGoogle Scholar
  28. [Ken]
    P. Kenderov, Monotone operators in Asplund spaces, C.R. Acad. Bulgare Sci. 30 (1977), 963–964.MATHMathSciNetGoogle Scholar
  29. [Lind4]
    J. Lindenstrauss, On operators which attain their norms, Israel J. Math. 3 (1963), 139–148.CrossRefMathSciNetGoogle Scholar
  30. [LuMa]
    J. Lukeš and J. Malý, Measure and integral, Matfyzpress, Prague 1994.Google Scholar
  31. [Mank]
    P. Mankiewicz, On the differentiability of Lipschitz mappings in Fréchet spaces, Studia Math. XLV, (1973), 15–29.MathSciNetGoogle Scholar
  32. [May]
    H.B. Maynard, A geometrical characterization of Banach spaces with the Radon-Nikodým property, Trans. Amer. Math. Soc. 185 (1973), 493–500.CrossRefMathSciNetGoogle Scholar
  33. [McOb]
    P.W. McCartney and R.C. O’Brian, A separable space with the Radon–Nikodým property that is not isomorphic to a subspace of a separable dual, Proc. Amer. Math. Soc. 78 (1980), 40–42.MATHMathSciNetGoogle Scholar
  34. [NaPh]
    I. Namioka and R.R. Phelps, Banach spaces which are Asplund spaces, Duke Math. J. 42 (1968), 735–750.CrossRefMathSciNetGoogle Scholar
  35. [NeZa]
    A. Nekvinda and L. Zajíček, A simple proof of Rademacher theorem, Časopis pro pěstování matematiky 113 (1988), 337–341.MATHGoogle Scholar
  36. [Phel1b]
    R.R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78–90.CrossRefMATHMathSciNetGoogle Scholar
  37. [Phelps]
    R.R. Phelps, Convex functions, monotone operators and differentiability, Lecture Notes in Mathematics 1364, Springer, 1989.Google Scholar
  38. [PrZa]
    D. Preiss and L. Zajíček, Fréchet differentiation of convex functions in a Banach space with a separable dual, Proc. Amer. Math. Soc. 91 (1984), 202–204.MATHMathSciNetGoogle Scholar
  39. [Qu]
    S. Quian, Nowhere differentiable Lipschitz maps and the Radon–Nikodým property, J. Math. Anal. Appl. 185 (1994), 613–616.CrossRefMathSciNetGoogle Scholar
  40. [Rieff]
    M.A. Rieffel, The Radon–Nikodým theorem for the Bochner integral, Trans. Amer. Math. Soc. 131 (1968), 466–487.CrossRefMATHMathSciNetGoogle Scholar
  41. [Rock]
    R.T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincare, Anal. Non Lin. 2 (1985), 167–184.MATHMathSciNetGoogle Scholar
  42. [Rudi2]
    W. Rudin, Real and complex analysis, McGraw Hill, New York, 1974.MATHGoogle Scholar
  43. [SchSerWer]
    W. Schachermayer, A. Sersouri, and E. Werner, Moduli of non-dentability and the Radon-Nikodým property in Banach spaces, Israel J. Math. 65 (1989), 225–257.CrossRefMATHMathSciNetGoogle Scholar
  44. [Steg1]
    C. Stegall, The Radon–Nikodým property in conjugate spaces, Trans. Amer. Math. Soc. 206 (1975), 213–223.CrossRefMATHMathSciNetGoogle Scholar
  45. [Steg2]
    C. Stegall, Optimization of functions on certain subsets of Banach spaces, Math. Ann. 236 (1978), 171–176.CrossRefMATHMathSciNetGoogle Scholar
  46. [Steg4b]
    C. Stegall, Optimization and differentiability in Banach spaces, J. Linear Algebra Appl. 84 (1986), 191–211.CrossRefMATHMathSciNetGoogle Scholar
  47. [Troy1]
    S. Troyanski, On locally uniformly convex and differentiable norms in certain nonseparable Banach spaces, Studia Math. 37 (1971), 173–180.MATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Marián Fabian
    • 1
  • Petr Habala
    • 2
  • Petr Hájek
    • 1
  • Vicente Montesinos
    • 3
  • Václav Zizler
    • 4
  1. 1.Mathematical Institute of the Academy of Sciences of the Czech RepublicPragueCzech Republic
  2. 2.Department of Mathematics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  3. 3.Departamento de Matematica AplicadaUniversidad Politécnica de ValenciaValenciaSpain
  4. 4.Department of Mathematical and Statistical SciencesUniversity of AlbertaEdmontonCanada

Personalised recommendations