Skip to main content

Modeling Gas–Liquid Flow in Metallurgical Operations

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

This chapter discusses the mathematical models and solution techniques usually employed in gas–liquid flow in metallurgical applications. Three approaches are generally used for modeling gas–liquid flows. The first approach considers the gas–liquid mixture as a single phase with variable density and solves a single set of transport equations. The second approach solves separate transport equations for the liquid and gas phases. The third method quantifies the mixing and flow characteristics by employing an energy balance for the system. These approaches are reviewed in the following section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sahai Y, Guthrie RIL (1982) Hydrodynamics of gas stirred melts: Part II. Axisymmetric flows. Metall Trans B 13B:203–211

    Article  Google Scholar 

  2. Sahai Y, Guthrie RIL (1982) Hydrodynamics of gas stirred melts: Part I. Metall Trans 13B:193–211

    Google Scholar 

  3. Kim SH, Fruehan RJ (1987) Physical modeling of liquid/liquid mass transfer in gas stirred ladles. Metall Trans B 18B:381–390

    Article  Google Scholar 

  4. Mietz J, Schneider S, Oeters F (1991) Emulsification and mass transfer in ladle metallurgy. Steel Res 62:10

    Google Scholar 

  5. Murthy GGK, Mehrotra SP (1992) Mixing in liquid baths by gas injection. Iron-Making Steel-Making 19(5):377–389

    Google Scholar 

  6. Gerlach F, Frohberg MG (1993) Mass transfer in a bottom blowing cold model converter. Steel Res 64(1):7–14

    Google Scholar 

  7. Ilegbusi OJ, Szekely J, Iguchı M, Takeuchi H, Morita ZI (1993) A comparison of experimentally measured and theoretically calculated velocity fields in a water model of an argon stirred ladle. ISIJ Int 33:474–478

    Article  Google Scholar 

  8. Ilegbusi OJ, Iguchi M, Nakajima K, Sano M, Sakamoto M (1998) Modeling mean flow and turbulence characteristics in gas-agitated bath with top layer. Metall Mater Trans B 29B: 211–222

    Article  Google Scholar 

  9. Mazumdar Nakajima HD, Guthrie RIL (1988) Possible roles of upper slag phases on the fluid dynamics of gas stirred ladles. Metall Trans 19B:507/11

    Google Scholar 

  10. Iguchi M, Demoto Y, Sugawara N, Morita Z (1992) Behavior of Hg-air vertical bubbling jets in a cylindirical vessel. ISIJ Int 32:998–1005

    Article  Google Scholar 

  11. Iguchi M, Sumida Y, Okada R, Morita Z (1994) Evaluation of critical gas flow rate for the entrapment of slag using a water model. Iron Steel Inst Jpn Int 34:164

    Article  Google Scholar 

  12. Iguchi M, Okita K, Nakatani T, Kasai N (1997) Structure of turbulent round bubbling jet generated by premixed gas and liquid injection. Int J Multiphase Flow 23:249–262

    Article  MATH  Google Scholar 

  13. Iguchi M, Ilegbusi OJ, Ueda H, Kuranaga T, Morita Z (1996) Water model experiment on the liquid flow behavior in a bottom blown bath with top layer. Metall Mater Trans B 27B:35–41

    Article  Google Scholar 

  14. Lin Z, Guthrie RIL (1994) Modeling of metallurgical emulsions. Metall Mater Trans B 25B:855–864

    Article  Google Scholar 

  15. Mazumdar D, Yamanoglu G, Guthrie RIL (1997) Hydrodynamic performance of steelmaking Tundish systems: A comparative study of three different Tundish designs. Steel Res 68(7): 293–300

    Google Scholar 

  16. Tacke KH, Schubert HG, Weber DJ, Schwerdtfeger K (1985) Characteristcs of round vertical gas bubble jet. Metall. Trans 16B:263–275

    Google Scholar 

  17. Castillejos EAH, Brimacombe JK (1986) SCANINJECT IV, Part 1, No. 16, 4th Conf. on Injection Metallurgy, MEFOS, Lulea, Sweden, paper no. 16.1

    Google Scholar 

  18. Castillejos EAH, Brimacombe JK (1987) Local properties of turbulent air water plumes in vertically injected jets. Metall Trans B 18B:649–658; 659–671

    Article  Google Scholar 

  19. Ilegbusi OJ, Szekely J (1987) Melt stratification in ladles. Trans ISIJ 27:563–569

    Article  Google Scholar 

  20. Murthy GGK, Ghosh A, Mehrotra SP (1988) Characterization of two-phase axisymmetric plume in a gas stirred liquid bath – a water model study. Metall Trans B 19B:885–892

    Article  Google Scholar 

  21. Oryall GN, Brimacombe JK (1976) The physical behavior of a gas jet injected horizontally into liquid metal. Metal Trans 7B:391–403

    Google Scholar 

  22. Szekely J, Wang HJ, Kiser KM (1976) Flow pattern velocity an turbulence energy measurements and predictions in a water model of argon-stirred ladle. Metall Trans B 7B:287–295

    Article  Google Scholar 

  23. DebRoy T, Mazumdar AK, Spalding DB (1978) Numerical prediction of recirculation flows with free convection encountered in gas-agitated reactors. Appl Math Modell 2:146–150

    Article  Google Scholar 

  24. Guthrie RIL (1992) Engineering in process metallurgy. Oxford University Press, New York, p 528.

    Google Scholar 

  25. Mazumdar D, Guthrie RIL (1986) Mixing models for gas stirred metallurgical reactors. Metall Trans B 17B:725–733

    Article  Google Scholar 

  26. Chung SH, Lange KW (1988) Convective diffusion and dispersion of additions in steel melts. Ironmaking Steelmaking 15:244–256

    Google Scholar 

  27. Asai S, Okamoto T, He J, Muchi I (1983) Mixing time of refining vessels stirred by gas injection. Trans ISIJ 23:43–50

    Article  Google Scholar 

  28. Bessho N, Yoda R, Yamasaki H (1991) Numerical analysis of fluid flow in continuous casting mold by a bubble dispersion model. Iron Steelmaker 18(4):39–44

    Google Scholar 

  29. Andrzejewski P, Kohler KU, Pluschkeli W (1992) Model investigations on the fluid flow in continuous casting molds on wide dimensions. Steel Res 3:242–246

    Google Scholar 

  30. Szekely J, Lee RG (1968) The effect of slag thickness on heat loss from ladles holding molten steel. Trans Metall Soc AIME 242:961–965

    Google Scholar 

  31. Chagraborty S, Sahai Y (1992) Effect of slag on heat loss and liquid steel flow in ladles before and during teeming to a continuous casting tundish. Metall Trans B 23B:135–151

    Article  Google Scholar 

  32. Johansen ST, Boysan F, Ayers WH (1987) Mathematical modeling of bubble driven flows in metallurgical processes. Appl Sci Res 44:197–207

    Article  Google Scholar 

  33. Johansen ST, Boysan F (1988) Fluid dynamics in bubbled stirred ladles, Part II: mathematical modeling. Metall Trans B 19B:755–764

    Article  Google Scholar 

  34. Woo JS, Szekely J, Castillejos E AH, Brimacombe JK (1990) A study on the mathematical modeling of turbulent recirculating flow in gas-stirred ladles. Metall Trans B 21B:269–277

    Article  Google Scholar 

  35. Davidson MR (1990) Numerical calculations of two-phase flow in a liquid bath with bottom injection: The central plume. Appl Math Modell 14:67–76

    Article  MATH  Google Scholar 

  36. Mazumdar D, Guthrie RIL (1995) The physical and mathematical modeling of gas stirred ladle systems. ISIJ Int 35:1–20

    Article  Google Scholar 

  37. Pan SM, Ho YH, Hwang WS (1997) Three-dimensional fluid flow model for gas stirred ladles. J Mater Eng Perform 6:625–635

    Google Scholar 

  38. Park HJ, Yang WJ (1997) Turbulent two-phase mixing in gas-stirred ladle systems for continuous casting applications. Numer Heat Transf A 31:493–515

    Article  Google Scholar 

  39. Grevet JH, Szekely J, El-Kaddah N (1981) An experimental and theoretical study of gas bubble driven circulation systems. Int J Heat Mass Transfer 25:487–497

    Article  Google Scholar 

  40. Schwarz MP, Turner WJ (1988) Applicability of the standard k-ε turbulence model to gas-stirred baths. Appl Math Modell 12:273–279

    Article  MATH  Google Scholar 

  41. Turkoglu H, Farouk B (1991) Mixing time and liquid circulation rate in steelmaking ladles with vertical gas. ISIJ Int 31:1371–1380

    Article  Google Scholar 

  42. Szekely J, Dilawari AH, Metz R (1979) The mathematical and physical modeling of turbulent recirculating flows. Metall Trans B 10B:33–41

    Article  Google Scholar 

  43. Szekely J, El-Kaddah NE, Grevet JH (1980) Second international conference on injection metallurgy “SCANINJECT II”. Jernkonteret Sweden 5:1–32

    Google Scholar 

  44. Mazumdar D, Guthrie RIL (1985) Hydrodynamic modeling of some gas injection procedure in ladle metallurgy operations. Metall Trans B 16B:83–90

    Article  Google Scholar 

  45. Mazumdar D, Guthrie RIL (1993) On the mathematical models and solutions of gas stirred ladle systems. Appl Math Modell 17:255–262

    Article  MATH  Google Scholar 

  46. Mazumdar D, Guthrie RIL (1993) On the numerical calculation and non-dimensional representation of velocity fields in bubbles-stirred ladle systems. Steel Res 64(6):286–291

    Google Scholar 

  47. Mazumdar D, Guthrie RIL (1994) An assessment of a two-phase calculation procedure for hydrodynamic modeling of submerged gas injection in ladles. ISIJ Int 34(5):384–392

    Article  Google Scholar 

  48. DebRoy T, Mazumdar AK (1981) Predicting fluid flow in gas stirred systems. J Metals 33(11):42–47

    Google Scholar 

  49. McKelliget JW, Cross M, Gibson RD, Brimacombe JK (1981) In: Spalding DB, Afgan NH (eds) Symp on heat and mass transfer in metallurgical systems. Hemisphere Publishing Corp., New York, NY, pp 349–372

    Google Scholar 

  50. Grevet JH, Szekely J, El-Kaddah N (1984) Melting rates in turbulent recirculating flow systems. Int J Heat Mass Transf 27:1116/1120

    Google Scholar 

  51. Zhang J, Du S, Wie S (1985) Flow field in a bath agitated by symmetrically placed impinging gas jet and submerged gas stream. Ironmaking Steelmaking 12:249/255

    Google Scholar 

  52. Castillejos EAH, Brimacombe JK (1989) Physical characteristics of gas jets injected vertically upward into liquid metal. Metall Trans B 20B:595–601

    Article  Google Scholar 

  53. Castillejos EAH, Salcudean ME, Brimacome JK (1989) Fluid flow and bath temperature desertification in gas-stirred ladles. Metall Trans B 20B:603–611

    Article  Google Scholar 

  54. Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, London

    Google Scholar 

  55. Middleman S (1965) Mass transfer from particles in agitated systems applications of the Kolmogoroff theory. A I Ch E Jl 11:750–752

    Article  Google Scholar 

  56. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Article  MATH  Google Scholar 

  57. Balaji D, Mazumdar D (1991) Numerical computation of flow in gas-stirred ladle systems. Steel Res 62(1):16–24

    Google Scholar 

  58. Szekely J, Asai S (1975) Trans ISIJ 15:271

    Google Scholar 

  59. Jones WP, Launder BE (1972) Int J Heat Transf 15:301–314

    Article  Google Scholar 

  60. Lopez de Bertodano M, Lee SJ, Lahey RT, Drew DA (1990) The prediction of 2-phase turbulence and phase distribution phenomena using a Reynolds stress model. J Fluid Eng 112:107–114

    Article  Google Scholar 

  61. El-Kaddah N, Szekely J (1981) Mathematical model for desulphrization kinetics in argon-stirred ladles. Ironmaking Steelmaking (6):269–278

    Google Scholar 

  62. Mazumdar D (1989) On effective viscosity models for gas-stirred ladle systems. Metall Trans B 20B:967–969

    Article  Google Scholar 

  63. Iguchi M, Nozawa K, Tomida H, Morita Z (1991) Tetsu-toHegane 77:840–852

    Google Scholar 

  64. Kuo JT, Wallis GB (1988) Int J Multiphase Flow 14:545

    Article  Google Scholar 

  65. Neifer M, Rödi S, Sucker D (1993) Investigation on the fluid dynamic and thermal process control in ladles. Steel Res 64(1):54–62

    Google Scholar 

  66. Johansen ST, Robertson DGC, Woje K, Engh TA (1988) Fluid dynamics in bubble stirred ladles: Part I. Experiments. Metall Trans B 19B:745–755

    Article  Google Scholar 

  67. Lehrer LH (1968) I & EC Process Des Dev 7:226–239

    Article  Google Scholar 

  68. Haida O, Brimacombe JK (1983) Third int. conf. injection metallurgy, Lulea, Sweden, vol. 1, pp 5:1–5:15

    Google Scholar 

  69. Bhavaraju SM, Russel TWF, Blanch HW (1978) AIChE J 24:454–466

    Article  Google Scholar 

  70. Sano M, Mori K (1983) Trans ISIJ 23:169–175

    Article  Google Scholar 

  71. Murthy GGK, Ghosh A, Mehrotra SP (1989) Mathematical modeling of mixing phenomena in a gas stirred liquid bath. Metall Trans B 20B:53–59

    Article  Google Scholar 

  72. Coshi JB, Sharma MM (1979) Trans Inst Chem Eng 54:244–251

    Google Scholar 

  73. Bernard RS, Maier RS, Falvey HT (2000) A simple computational model for bubble plumes. Appl Math Model 24:215–233

    Article  MATH  Google Scholar 

  74. Boysan F, Ayers WH, Swithenbank J, Pan Z (1982) Three-Dimensional model of spray combustion in gas turbine combustors. J Energy 6:368–375

    Article  Google Scholar 

  75. Sano M, Makino Y, Ozawa Y, Mori K (1986) Behavior of gas jet and plume in liquid metal. Trans ISIJ 26:298–304

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Modeling Gas–Liquid Flow in Metallurgical Operations. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics