Skip to main content

Interfacial Phenomena

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

Foaming in steel refining processes and in bath smelting reduction processes adversely impacts the quality and productivity of steel. Suppression of foaming is, therefore, one of the key processes in the steelmaking industry. Foaming is known to be caused through the effect of CO gas generation from decarburization and to be suppressed by adding coke or coal to the upper slag layer, decreasing the viscosity of the slag, or increasing the surface tension of the slag [1,2,3,4,5]. In addition, a low-frequency sonic wave is considered to be effective for suppression of slag foaming [6]. Based on X-ray fluoroscopic observations, Ogawa et al. [7] found that the attachment of CO bubbles to a solid body of poor wettability is extremely effective for suppressing foaming. The CO bubbles attached to the body become larger due to coalescence and are pulled to the bath surface as a result of the increased buoyancy force acting on the bubbles. This result suggests that the attachment of bubbles to solid bodies of poor wettability may be useful for removing fine bubbles contained in molten metals. For example, the method would be applicable to the removal of fine argon bubbles from continuous casting molds and thus aid the production of clean steel by suppressing bubble-induced defects such as pinhole and sliver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ito K, Fruehan RJ (1989) Study on the foaming of CaO-SiO2-FeO Slags. Part II. Dimensional analysis and foaming in iron and steelmaking processes. Metall Trans B 20B:515

    Google Scholar 

  2. Ghag SS, Hayes PC, Lee H-G (1998) Model development of slag foaming. ISIJ Int 38:1208

    Article  Google Scholar 

  3. Hing L, Hirasawa M, Sano M (1998) Behavior slags by of slag foaming with graphite. ISIJ Int 38:1339

    Article  Google Scholar 

  4. Matsuo M, Hirata H, Katayama H, Ishikawa H, Kajioka H, Tokumitsu N (1986) Tetsu-to-Hagane 72:S970

    Google Scholar 

  5. Ito K, Fruehan RJ (1989) Study on the foaming of CaO-SiO2-FeO Slags: Part I. Foaming parameters and experimental results. Metall Trans B 20B:509

    Article  Google Scholar 

  6. Komarov SV, Kuwabara M, Sano M (1990) Mechanism of acoustic defoaming by applying low frequency sound. CAMP ISIJ 12:721

    Google Scholar 

  7. Ogawa Y, Tokumitsu N (1990) Observation of slag foaming by X-ray fluoroscopy, In: Proceedings of the 6th international iron and steel congress. ISIJ, Tokyo, p 147

    Google Scholar 

  8. Mizuno Y, Shimizu T, Sonoyama N, Iguchi M (2000) Attachment of bubbles to a horizontal circular cylinder of poor wettability. Jpn J Multiphase Flow 14:166

    Article  Google Scholar 

  9. Sonoyama N, Iguchi M, Sasaki Y, Ishii K (2000) Behavior of a single bubble colliding with a flat plate of poor wettability. Tetsu-to-Hagane 86:203

    Google Scholar 

  10. Lee C, Takahashi I, Miyata H (1995) Proposal on evaluation method of adhesion tension based on analytical estimation of configuration of sessile drops. Trans Jpn Soc Mech Eng (B) 61:4386

    Google Scholar 

  11. Fritz W (1935) Maximum volume of vapor bubbles, Physik Zeitschr 36:379

    Google Scholar 

  12. Bashforth F, Adams JC (1883) An attempt to test the theories of capillary action. Cambridge University Press, London

    Google Scholar 

  13. Murakami K, Sunada T, Ueki N (1998) Behavior of residual liquid on disk for mist flow injected between horizontal parallel disks. Trans Jpn Soc Mech Eng (B) 64:2071

    Google Scholar 

  14. Sano M, Mori K, Sato T (1977) Bubble formation at single nozzles immersed in molten iron. Tetsu-to-Hagane 63:2308

    Google Scholar 

  15. Mizuno Y, Inoue H, Sonoyama N, Iguchi M (2000) Size and shape of a bubble on the upper surface of a horizontal plate of poor wettability. Tetsu-to-Hagane 86:709–716

    Google Scholar 

  16. Ozawa Y, Mori K, Sano M (1981) Behavior of injected gas observed at the exit of a submerged orifice in liquid metal. Tetsu-to-Hagane 16:2655

    Google Scholar 

  17. Asai S (1984) 100th and 101st Nishiyama memorial lecture. ISIJ, Tokyo, pp 67

    Google Scholar 

  18. Sahai Y, St. Pierre GR (1992) Advances in transport phenomena in metallurgical systems. Elsevier, Amsterdam

    Google Scholar 

  19. The 140th Committee of Japan Society for Promotion of Science (1988) Handbook of physicochemical properties at high temperatures. ISIJ, Tokyo

    Google Scholar 

  20. Mori K, Sano M (1981) Process kinetics in injection metallurgy. Tetsu-to-Hagane 67:672

    Google Scholar 

  21. Iguchi M, Chihara T, Takanashi N, Ogawa Y, Tokumitsu N, Morita Z (1995) X-ray fluoroscopic observation ot bubble characteristics in a molten iron bath. ISIJ Int 35:1354

    Article  Google Scholar 

  22. Irons GA, Guthrie RIL (1978) Bubble formation at nozzles in pig iron. Metall Trans 9B:101

    Google Scholar 

  23. Zhe W, Mukai K, Yamaguchi K, Lee J (1998) Influence of interfacial properties on the formation of bubble-related defects in slab. CAMP ISIJ 11:24

    Google Scholar 

  24. Kawakami M, Tomimoto, Itoh K (1982) Statistical analysis of gas bubbles dispersion in liquid phase. Tetsu-to-Hagane 68:774

    Google Scholar 

  25. Iguchi M, Ueda H, Uemura T (1995) Bubble and liquid flow characteristics in a vertical bubbling jet. Int J Multiphase Flow 21:861

    Article  MATH  Google Scholar 

  26. Iida T, Guthrie RIL (1988) The physical properties of liquid metals. Oxford University Press, Oxford

    Google Scholar 

  27. Castillejos AH, Brimacombe JK (1987) Measurement of physical characteristics of bubbles in gas-liquid plumes. Part I1. Local properties of turbulent air-water plumes in vertically injected jets. Metall B 18B:659

    Google Scholar 

  28. Sano M, Makino H, Ozawa Y, Mori K (1986) Behavior of gas jet and plume in liquid metal. Trans Iron Steel Inst Jpn 26:298

    Article  Google Scholar 

  29. Iguchi M, Nozawa K, Tomida H, Morita Z (1992) Bubble characteristics in the buoyancy region of a vertical bubbling jet. ISIJ Int 32:747

    Article  Google Scholar 

  30. Mazumdar D, Guthrie RIL (1995) The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int 32:747

    Google Scholar 

  31. Sugita K (1998) Various phenomena observed at refractory-iron melt interfaces: A condensed history of studies on their interactions. Bul ISIJ (Ferrum) 3:891

    Google Scholar 

  32. Sonoyama N, Iguchi M (1999) Wettability effects on bubble characteristics in a bubbling wall jet along a vertical flat plate. ISIJ Int 39:673–679

    Article  Google Scholar 

  33. Rajaratnam N (1981) Turbulent jet (trans: Nomura Y). Morikita Publishing Co. Ltd., Tokyo

    Google Scholar 

  34. Rajaratnam N, Pani BS (1994) Three-dimensional turbulent wall jets, Trans ASCE 100(HY1):69

    Google Scholar 

  35. Verhoff A (1963) The two-dimensional turbulent wall jet with and without an external stream. Rep. 626, Princeton University, Princeton, NJ

    Google Scholar 

  36. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New York

    Google Scholar 

  37. Hetsroni G (1989) Particles-turbulence interaction. Int J Multiphase Flow 15:735

    Article  Google Scholar 

  38. Iguchi M, Sonoyama N (2000) Wettability effects on liquid flow characteristics in a bubbling wall jet along a vertical flat plate. ISIJ Int 40:1–6

    Article  Google Scholar 

  39. Shinozaki N, Echida N, Mukai K, Takahashi Y, Tanaka Y (1994) Wettability of Al2O3-MgO, ZrO2-CaO, Al2O3-CaO substrates with molten iron. Tetsu-to-Hagane 80:748–753

    Google Scholar 

  40. Takahira H, Fujikawa S, Akamatsu T (1989) Collapse motion of a single gas bubble near a plane or curved rigid wall. Trans Jpn Soc Mech Eng B 55:2720–2728

    Article  Google Scholar 

  41. Shopov PJ, Minev PD, Bazhlekov IB, Zapryanov ZD (1990) Interaction of a deformable bubble with a rigid wall at moderate Reynolds numbers. J Fluid Mech 219:241–271

    Article  Google Scholar 

  42. Maxworthy T (1991) Bubble rise under an inclined plate. J Fluid Mech 229:659–674

    Article  Google Scholar 

  43. Tsao H, Koch DL (1997) Observations of high Reynolds number bubbles interacting with a rigid wall. Phys Fluids 9:44–56

    Article  Google Scholar 

  44. Wang QX, Yeo KS, Khoo BC, Lam KY (1998) Toroidal bubbles near a rigid boundary. Theoret Comput Fluid Dyn 12:29–51

    Article  MATH  Google Scholar 

  45. Tao Z, Mukai K, Takahashi T (1999) Mechanism of local corrosion of MgO-C refractory at slag-metal interface. CAMP ISIJ 12:208

    Google Scholar 

  46. Abbel G, Damen W, de Gendt G, Tiekink W (1996) Argon bubbles in slabs. ISIJ Int 36:S219–S222

    Article  Google Scholar 

  47. Kasai N, Watanabe Y, Kajiwara T, Toyoda M (1997) Mechanism of fine bubbles entrapment beneath the surface of continuously cast slabs. Tetsu-to-Hagane 83:24–29

    Google Scholar 

  48. Iguchi M, Nakatani T, Ueda H (1997) Model study of turbulence structure in a bottom blown bath with top slag using conditional sampling. Metall Trans B 28:87–94

    Article  Google Scholar 

  49. Zhe W, Mukai K, Matsuoka K (1997) Water model experiment for the behaviors of bubbles and liquid flow on the inside of the nozzle and mold of continuous casting process. CAMP ISIJ 10:68–71

    Google Scholar 

  50. MacDougall G, Ockrent C (1942) Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc R Soc Lond Ser A 180:151–173

    Google Scholar 

  51. Shoji M, Zhang XY (1992) Study of contact angle hysteresis: In relation to boiling surface wettability. Trans Jpn Soc Mech Eng B 58:1853–1859

    Article  Google Scholar 

  52. Fukai J, Shibata Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling. Phys Fluids 7:236–247

    Article  Google Scholar 

  53. Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28:988–994

    Article  Google Scholar 

  54. Fujita M, Madarame H (1983) Bubble dynamics in a horizontal rectangular pipe with rough wall. Trans Jpn Soc Mech Eng B 49:1676–1684

    Article  Google Scholar 

  55. Murakami K, Sunada T, Ueki N (1998) Behavior of residual liquid on disk for mist flow injected between horizontal parallel disks. Trans Jpn Soc Mech Eng B 64:2071–2078

    Article  Google Scholar 

  56. Kawasaki K (1960) Study of wettability of polymers by sliding of water drop. J Colloid Sci 15:402–407

    Article  Google Scholar 

  57. Furmidge CGL (1962) Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. J Colloid Sci 17:309–324

    Google Scholar 

  58. Larkin BK (1967) Numerical solution of the equation of capillarity. J Colloid Interface Sci 23:305–312

    Article  Google Scholar 

  59. Ogawa Y, Huin D, Gaye H, Tokumitsu N (1993) Physical model of slag foaming. ISIJ Int 33(1):224–232

    Article  Google Scholar 

  60. Sano N, Fruehan RJ, Cramb AW (1991) Computer aided interfacial measurements, US-Japan joint seminar, fundamental of bath smelting and clean steel production. Myrtle Beach, 7–9 Oct

    Google Scholar 

  61. Fukui K (1996) A study on the new iron ore smelting reduction processes. Tetsu-to-Hagane 82(1):1–7

    Google Scholar 

  62. Iguchi M, Kondoh T, Uemura T (1994) Simultaneous measurement of liquid and bubble velocities in a cylindrical bath subject to centric bottom gas injection. Int J Multiphase Flow 20:753–762

    Article  MATH  Google Scholar 

  63. Anagbo PE, Brimacombe JK (1990) Plume characteristics and liquid circulation in gas injection through a porous plug. Metall Mater Trans B 21B:637–648

    Google Scholar 

  64. Iguchi M, Kaji M, Morita Z (1998) Effects of pore diameter, bath surface pressure, and nozzle diameter on the bubble formation from a porous nozzle. Metall Mater Trans B 29B:1209–1218

    Article  Google Scholar 

  65. Davidson L, Amick EH Jr (1956) Formation of gas bubbles at horizontal orifices. AIChE J 2:337–342

    Article  Google Scholar 

  66. Castello-Branco MASC, Schwerdtfeger K (1994) Large-scale measurements of the physical characteristics of round vertical bubble plumes in liquids. Metall Mater Trans B 25B:359–371

    Article  Google Scholar 

  67. Akagawa K (1980) Gas–liquid two-phase flow. Corona Publishing Co. Ltd, Tokyo

    Google Scholar 

  68. Hetsroni G (1982) Handbook of multiphase systems. Hemisphere Publishing Corporation, Washington

    Google Scholar 

  69. Ueda T (1989) Gas–liquid two-phase flow (Fluid flow and heat transfer). Yokendo Publishing Co. Ltd, Tokyo

    Google Scholar 

  70. The Japan Society of Mechanical Engineers (1989) Handbook of gas–liquid two-phase flow technology. Corona Publishing Co. Ltd., Tokyo

    Google Scholar 

  71. Barajas AM, Panton RL (1993) The effects of contact angle on two-phase flow in capillary tubes. Int J Multiphase Flow 19:337–346

    Article  MATH  Google Scholar 

  72. Terauchi Y, Iguchi M, Kosaka H, Yokoya S, Hara S (1999) Wettability effect on the flow pattern of air–water two-phase flows in a vertical circular pipe. Tetsu-to-Hagane 85(9):645–651 (in Japanese)

    Google Scholar 

  73. Taitel Y, Barnea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in vertical tubes. AIChE J 26(3):345–354

    Article  Google Scholar 

  74. Weisman J, Kang SY (1981) Flow pattern transitions in vertical and upwardly inclined lines. Int J Multiphase Flow 7:271–291

    Article  Google Scholar 

  75. Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat Mass Transfer 27:723–737

    Article  Google Scholar 

  76. Iguchi M, Terauchi Y (2001) Boundaries among bubbly and slug flow regimes in air–water two-phase flows in vertical pipe of poor wettability. Int J Multiphase Flow 27:729–735

    Article  MATH  Google Scholar 

  77. Nicklin DJ, Wilke JO, Davidson JF (1962) Two-phase flow in vertical tubes. Trans Inst Chem Eng 40(1):61

    Google Scholar 

  78. Kariyasaki A, Fukano T, Outsuka A, Kagawa M (1992) Isothermal air-water two-phase up-and downward flows in a vertical capillary tube (1st report, flow pattern and void fraction). Trans Jpn Soc Mech Eng 58(553):2684–2690

    Article  Google Scholar 

  79. Akagawa K, Sakaguchi T (1965) Fluctuation of void ratio in a two-phase flow : 3rd report, absolute velocities of slugs and small bubbles. Trans Jpn Soc Mech Eng 31(224):601–607

    Article  Google Scholar 

  80. Street JR, Tek MR (1965) Dynamics of bullet shaped bubbles encountered in vertical gas liquid slug flow. AIChE J 11(4):644–650

    Article  Google Scholar 

  81. Iguchi M, Terauchi Y (2000) Rising behavior of air–water two-phase flows in vertical pipe of poor wettability. ISIJ Int 40:567–571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Interfacial Phenomena. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics