Skip to main content

Turbulence Structure of Two-Phase Jets

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

Gas injection techniques have been extensively used for current steelmaking processes, such as converters, ladles, RH degassing processes, and other metals refining processes. In order to enhance the efficiency of these processes, precise information on the behavior of rising bubbles in a molten metal bath and resultant molten metal flow induced by the bubbles is required. Since it is difficult to study bubble and liquid flow characteristics using actual processes, many experimental and theoretical model investigations have been carried out. Details of the previous investigations should be referred to, for example, a review article by Mazumdar and Guthrie [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mazumdar D, Guthrie RIL (1995) The Physical and mathematical modelling of gas stirred ladle systems. ISIJ Int 35:1–20

    Article  Google Scholar 

  2. Iguchi M, Kawabata H, Itoh Y, Nakajima K, Morita Z (1994) Continuous measurements of bubble characteristics in a molten iron bath with Ar gas bubbling. Tetsu-to-Hagane 80: 365–370

    Google Scholar 

  3. Iguchi M, Kawabata H, Nakajima K, Morita Z (1995) Measurement of bubble characteristics in a molten iron bath at 1600∘C using an electroresistivity probe. Metall Mater Trans B 26B: 67–74

    Article  Google Scholar 

  4. Iguchi M, Kawabata H, Nakajima K, Morita Z (1996) Bubble characteristics in molten copper bath with gas injection. Trans Jpn Soc Mech Eng 62–593:79–84

    Google Scholar 

  5. Iguchi M, Kawabata H, Itoh Y, Nakajima K, Morita Z (1996) Continuous measurements of bubble characteristics in a molten iron bath with Ar gas injection. ISIJ Int 34:980–985

    Article  Google Scholar 

  6. Iguchi M, Demoto Y, Sugawara N, Morita Z (1992) Behavior of Hg-air vertical bubbling jet in a cylindrical vessel. Tetsu-to-Hagane 78:407–414

    Google Scholar 

  7. Iguchi M, Demoto Y, Sugawara N, Morita Z (1992) Bubble behavior in Hg-air vertical bubbling jets in a cylindrical vessel. ISIJ Int 32:998–1005

    Article  Google Scholar 

  8. Iguchi M, Takeuchi H, Morita Z (1990) The flow field in air-water vertical bubbling jets in a cylindrical vessel. Tetsu-to-Hagane 76:699–706

    Google Scholar 

  9. Iguchi M, Kondoh T, Morita Z, Nakajima K, Hanazaki K, Uemura T, Yamamoto F (1995) Velocity and turbulence measurements in a cylindrical bath subject to centric bottom gas injection. Metall Mater Trans B 26:241–247

    Article  Google Scholar 

  10. Sheng YY, Irons GA (1992) Measurements of the internal structure of gas-liquid plumes. Metall Mater Trans B 23:779–788

    Google Scholar 

  11. Iguchi M, Ueda H, Uemura T (1995) Bubble and liquid flow characteristics in a vertical bubbling jet. Int J Multiphase Flow 21:861–873

    Article  MATH  Google Scholar 

  12. Iguchi M, Takeuchi H, Morita Z (1991) The flow field in air-water vertical bubbling jets in a cylindrical vessel. ISIJ Int 31:246–253

    Article  Google Scholar 

  13. Hsiao TC, Lehner T, Kjellberg B (1978) Fluid flow in ladles – experimental results. Scand J Metal 9:105–110

    Google Scholar 

  14. Iguchi M, Kawabata H, Demoto Y, Morita Z (1991) Cold model experiment for developing a new velocimeter applicable to molten metal. Tetsu-to-Hagane 79:1046–1052

    Google Scholar 

  15. Mikrovas AC, Argyropoulos SA (1993) Measurement of velocity in high-temperature liquid metals. Metall Mater Trans B 24:1009–1022

    Article  Google Scholar 

  16. Iguchi M, Kawabata H, Demoto Y, Morita Z (1994) Cold model experiments for developing a new velocimeter applicable to molten metal. ISIJ Int 34:461–467

    Article  Google Scholar 

  17. Iguchi M, Takeuchi M, Kawabata H, Ebina K, Morita Z (1994) Development of a Kármán vortex probe for measuring the velocity of molten metal flow. Trans JIM 35:716–722

    Google Scholar 

  18. Iguchi M, Kawabata H, Ogura T, Hayashi A, Terauchi Y (1996) A new prove for directly measuring flow velocity in the continuous casting mold, Proc first int steelmaking conference, Chiba, Japan, ISIJ, p 40

    Google Scholar 

  19. Sawada I, Tani M, Szekely J, Ilegbusi OJ (1991) Recent developments and possibilities of computational fluid dynamics in materials processing. Tetsu-to-Hagane 77:1234–1242

    Google Scholar 

  20. Sahai Y, St. Pierre GR (1992) Advances in transport processes in metallurgical systems. Elsevier, Amsterdam

    Google Scholar 

  21. Ricou R, Vives C (1982) Local velocity and mass transfer measurements in molten metals using an incorporated magnet probe. Int J Heat Mass Transf 25–10:1579–1588

    Article  Google Scholar 

  22. von Weissenfluh T (1985) Probes for local velocity and temperature measurements in liquid metal flow. Int J Heat Mass Transf 28–8:1563–1574

    Article  Google Scholar 

  23. Xie Y, Orsten S, Oeters F (1992) Behaviour of bubbles at gas blowing into liquid wood’s metal. ISIJ Int 32:66–75

    Article  Google Scholar 

  24. Iguchi M, Tokunaga H, Tatemichi H (1997) Bubble and liquid flow characteristics in a wood’s metal bath stirred by bottom helium gas injection. Metall Mater Trans B 28B:1053–1061

    Article  Google Scholar 

  25. Iguchi M, Nakatani T, Kawabata H (1997) The shape of bubbles rising near the nozzle exit in molten metal baths. Metall Mater Trans B 28B:417–423

    Article  Google Scholar 

  26. Kondoh H (1993) Bachelor’s dissertation. Fac Eng Osaka Univ

    Google Scholar 

  27. Iguchi M, Takanashi N, Ogawa Y, Tokumitsu N, Morita Z (1994) X-ray fluoroscopic observations of bubble characteristics in a molten iron bath. Tetsu-to-Hagane 80–7:515–520

    Google Scholar 

  28. Iguchi M, Chihara T, Takanashi N, Ogawa Y, Tokumitsu N, Morita Z (1995) X-ray fluoroscopic observation of bubble characteristics in a molten iron bath. ISIJ Int 35–11:1354–1361

    Article  Google Scholar 

  29. Wygnanski I, Fiedler H (1969) Some measurements in the self-preserving jet. J Fluid Mech 38–3:577–612

    Article  Google Scholar 

  30. Panchapakesan NR, Lumley JL (1993) Turbulence measurements in axisymmetric jets of air and helium. Part 1. Air jet. J Fluid Mech 246:197–223

    Article  Google Scholar 

  31. Theofanous TG, Sullivan J (1982) Turbulence in two-phase dispersed flows. J Fluid Mech 116:343–362

    Article  Google Scholar 

  32. Mostafa AA (1992) Turbulent diffusion of heavy-particles in turbulent jets. Trans ASME J Fluids Eng 114:667–671

    Article  Google Scholar 

  33. Tsuji Y, Morikawa Y (1982) LDV measurements of an air–solid two-phase flow in a horizontal pipe. J Fluid Mech 120:385–409

    Article  Google Scholar 

  34. Lance M, Bataille J (1991) Turbulence in the liquid phase of a uniform bubbly air–water flow. J Fluid Mech 222:95–118

    Article  Google Scholar 

  35. Longmire EK, Eaton JK (1992) Structure of a particle-laden round jet. J Fluid Mech 236: 217–257

    Article  Google Scholar 

  36. Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiphase Flow 2:279–285

    Article  Google Scholar 

  37. Hetsroni G (1989) Particles-turbulence interaction. Int J Multiphase Flow 5:735–746

    Article  Google Scholar 

  38. Iguchi M, Okita K, Nakatani T, Kasai N (1997) Structure of turbulent round bubbling jet generated by premixed gas and liquid injection. Int J Multiphase Flow 23:249–262

    Article  MATH  Google Scholar 

  39. Iguchi M, Nakatani T, Ueda H (1997) Model study of turbulence structure in a bottom blown bath with top slag using conditional sampling. Metall Mater Trans B 28B:87–94

    Article  Google Scholar 

  40. Iguchi M, Nozaawa K, Tomida H, Morita Z (1992) Bubble characteristics in the buoyancy region of a vertical bubbling jet. ISIJ Int 32:747–753

    Article  Google Scholar 

  41. Iguchi M, Nakatani T, Tokunaga H (1997) The shape of bubbles rising near the nozzle exit in molten metal baths. Metall Mater Trans B 28B:417–423

    Article  Google Scholar 

  42. Brodkey RS, Wallace JM, Eckelmann H (1974) Some properties of truncated turbulence signals in bounded shear flows. J Fluid Mech 63:209–224

    Article  Google Scholar 

  43. Kim J, Moin P, Moser P (1983) Turbulence statistics in fully developed channel flow at low Reynolds number. J Fluid Mech 177:133–166

    Article  Google Scholar 

  44. Iguchi M (1988) The structure of turbulence in pulsatile pipe flow accompanied by relaminarization. JSME Int J 31:623–631

    Google Scholar 

  45. Iguchi M, Nakatani T, Okita K, Yamamoto F, Morita Z (1996) Turbulence in reactors agitated by bottom gas injection. ISIJ Int Suppl 36:38–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Turbulence Structure of Two-Phase Jets. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics