Skip to main content

Review of Nanoscale and Microscale Phenomena in Materials Processing

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

Due to recent rapid developments in a variety of nanoscale and microscale devices [1, 2], information on the basic characteristics of multiphase transport phenomena in nanochannels and microchannels has become increasingly important. A characteristic feature of such systems is that a surface force or an interfacial force predominates over the body force. The wettability of solid walls of channels and surface tension of liquid, therefore, play an essential role in analyzing the transport phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reyes DR, Iossifidis D, Auroux P-A, Manz A (2002) Micro total analysis systems. 1. Introduction, theory, and technology, Anal Chem 74:2623–2636

    Article  Google Scholar 

  2. Auroux PA, Iossifidis D, Reyes P-A, Manz A (2002) Micro total analysis systems. 2. Analytical standard operations and applications, Analytical Chemistry 74:2637–2652

    Article  Google Scholar 

  3. Inoue T, Iguchi M, Mizuno Y (2000) Separation of gas and liquid based on wettability difference of circular pipes. Proc. 1st Jpn. Soc, Multiphase Flow Conference pp 241–242

    Google Scholar 

  4. Ohnari H, Ohnari H, Nakayama T, Shakutui H (2003) Proc. JSME Annual Meeting, Osaka, July 23–25, pp 221–222

    Google Scholar 

  5. Serizawa A, Yahiro T (2001) Proc. JSMF Annual Meeting, Kita-kyusyu, July 12–13, pp 139–140

    Google Scholar 

  6. Sano M, Fujita Y, Mori K (1976) Formation of bubbles at single nonwetted nozzles in mercury, Metal. Trans. 7B:300–301

    Google Scholar 

  7. Iguchi M, Chihara T (1998) Water model study of the frequency of bubble formation under reduced and elevated pressures, Metall Mater Trans B 29B:755–761

    Article  Google Scholar 

  8. Kukizaki M, Nakashima T, Song J, Kohama Y (2004) Monodispersed nano-bubbles generated from porous glass membrane and bubble size control, Kagaku Kogaku Ronbunshu 30–5:654–660

    Article  Google Scholar 

  9. Martinez-Bazan JL, Montanes, Lasheras JC (1999) On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size PDF of the resulting daughter bubbles, J. Fluid Mech. 401:183–207

    Article  Google Scholar 

  10. Sadatomi M, Kawahara A, Kano K, Ohtomo A (2002) Proc. JSMF Annual Meeting, Nagoya, July 29–31, pp 13–14

    Google Scholar 

  11. Fujikawa S, Zhang R, Hayama S, Peng G (2003) The control of micro-air-bubble generation by a rotational porous plate, Int. J. Multiphase Flow 29:1221–1236

    Article  MATH  Google Scholar 

  12. Ito H, Tomodokoro T, Takemura F, Hishida K (2002) Proc. JSMF Annual Meeting, Nagoya, July 29–31, pp 157–158

    Google Scholar 

  13. Shakouchi T, Oike T, Nishiyama S (2002) Proc. JSMF Annual Meeting, Nagoya, July 29–31, pp 159–160

    Google Scholar 

  14. Kim M, Song G, Kim J.D (2000) Zeta potential of nanobubbles generated by ultrasonication in aqueous alkyl polyglycoside solutions, J. Colloid and Interface Science 223:285–291

    Article  Google Scholar 

  15. Inaba H, Horibe A, Haruki N, Nakao T (2004) Micro bubbles generation by depressurization from high pressure water, Proc. JSMF Annual Meeting, Okayama, August 5–7, pp 325–326

    Google Scholar 

  16. Miyahara T, Norikane H, Maeda J, Ono Y (2004) Micro-bubble formation by liquid flow through raschig ring packed bed, Proc. JSMF Annual Meeting, Okayama, August 5–7, pp 327–328

    Google Scholar 

  17. Inui T, Serizawa A, Yahiro T (2003) Proc. JSMF Annual Meeting, Osaka, July 23–25, pp 165–166

    Google Scholar 

  18. Imai R, Yano T (1997) A study of bubble separation utilizing centrifugal force under a reduced gravity condition, Trans. JSME(B) 63–611:2296–2302

    Google Scholar 

  19. Shakutsui H, Watanabe K, Onari H, Saga T, Kadowaki H (2000) A311 flow patterns in swirl gas-liquid two-phase flow in a vertical pipe (Phase separation), Proc. of 4th JSME-KSME Thermal Engineering Conference, October 1–6, Kobe, Japan, vol. 3, pp 69–72

    Google Scholar 

  20. Kamimura H, Yoshihara S, Azuma H (1993) J Jpn Soc Microgravity Application 10–4:129

    Google Scholar 

  21. Mochizuki O (1996) Active control of bubble, Proc. 5th Symposium on Short Period Microgravity Application, pp 27–30

    Google Scholar 

  22. Miyazaki Y (1996) Development of high temperature fluid flow technologies in microgravity, NEDO-ITK-9507, pp 159–172

    Google Scholar 

  23. Jpn. Soc. Microgravity Application (1996) Frontiers in experiments in space, B-1135:219

    Google Scholar 

  24. Azuma H et al (1983) Proc. 27th Symposium on Science and Technology in Space, pp 182–183

    Google Scholar 

  25. Imai R, Yano T (1994) Bubble transfer by electrostatic force, preprint of Jpn. Soc. Mech. Eng, No. 930–9(1993), pp 388–390; Trans. JSME(B) 60:3979–3986

    Google Scholar 

  26. Okuzawa T, Kojima Y, Tsubouchi K, Takagi Y, Hamamoto T (1992) Fundamental investigation of an electromagnetic degasser, Trans. JSME(C) 58:3543

    Google Scholar 

  27. Wakayama N (1996) Development of high temperature fluid flow technologies in microgravity. NEDO-ITK-9507, pp 99–112

    Google Scholar 

  28. Okuzawa T et al (1990) Proc. 7th Symposium on Microgravity Application, pp 367–372

    Google Scholar 

  29. Lahey RT Jr (1986) Current understanding of phase separation mechanisms in branching conduits, Nuclear Engineering and Design 95:pp 145–161

    Article  Google Scholar 

  30. Azzopardia BJ, Purvisand A, Govana AH (1987) Annular two-phase flow split at an impacting T, Int. J. Multiphase Flow 13–5:605–614

    Article  Google Scholar 

  31. Hwang ST, Soliman HM, Lahey RT Jr (1989) Phase separation in impacting wyes and tees, Int. J. Multiphase Flow 15–6:965–975

    Article  Google Scholar 

  32. Asano H, Fujii T, Takenaka N, Watanabe T, Ogura A, Arakawa T (2000) A309 The phase separation characteristics of a gas-liquid two-phase flow in an impacting Y-junction: Application to microgravity condition (Phase separation), Proc. 4th JSME-KSME Thermal Eng. Conf. 3:3–57-3–62

    Google Scholar 

  33. Inoue T, Iguchi M, Mizuno Y (2001) Separation of gas and liquid using wettability difference of T-junction, J Jpn Soc. Multiphase Flow 15–2:158–164

    Google Scholar 

  34. Mizuno Y, Iguchi M (2002) Separation of gas and liquid based on wettability difference of a horizontally placed Y-junction, Jpn. Soc. Mech. Eng 68–675:2984–2989

    Article  Google Scholar 

  35. Terauchi Y, Iguchi M, Kosaka H, Yokoya S, Hara S (1999) Wettability effect on the flow pattern of air—water two-phase flows in a vertical circular pipe, Tetsu-to- Hagane 85:645–651

    Google Scholar 

  36. Mizuno Y, Shimizu T, Sonoyama N, Iguchi M (2000) Attachment of bubbles to a horizontal circular cylinder of poor wettability, Jpn. J. Multiphase Flow 14:166–175

    Article  Google Scholar 

  37. Mizuno Y, Iguchi M (2001) Behavior of bubbles attaching to and detaching from solid body of poor wettability. ISIJ Int 41 Suppl, S56–S59

    Article  Google Scholar 

  38. Iguchi M, Terauchi Y (2001) Boundaries among bubbly and slug flow regimes in air–water two-phase flows in vertical pipe of poor wettability, Int. J. Multiphase Flow 27:729–735

    Article  MATH  Google Scholar 

  39. Iguchi M, Terauchi Y (2001) Microgravity effects on the rising velocity of bubbles and slugs in vertical pipes of good and poor wettability, Int. J. Multiphase Flow 27:2189–2198

    Article  MATH  Google Scholar 

  40. Serizawa A, Feng Z, Kawahara Z (2002) Proc. JSMF Annual Meeting, Nagoya, July 29–31, pp 281–284

    Google Scholar 

  41. Kraus T, Gunther A, Mas N, Schmidt MA, Jensen KF (2004) An integrated multiphase flow sensor for microchannels, Exp. In Fluids 36:819–832

    Article  Google Scholar 

  42. Akbar MK, Plummer DA, Ghiaasiaan SM (2003) On gas–liquid two-phase flow regimes in microchannels, Int. J. Multiphase Flow 29:855–865

    Article  MATH  Google Scholar 

  43. Hetsroni G, Mosyak A, Segal Z, Pogrebnyak E (2003) Two-phase flow patterns in parallel micro-channels, Int. J. Multiphase Flow 29:341–360

    Article  MATH  Google Scholar 

  44. Chung PM-Y, Kawaji M (2004) The effect of channel diameter on adiabatic two-phase flow characteristics in microchannels, Int. J. Multiphase Flow 30:735–761

    Article  MATH  Google Scholar 

  45. de Gennes PG (1998) The dynamics of reactive wetting on solid surfaces, Physica A 249:196–205

    Article  Google Scholar 

  46. Paterson A, Fermigier M, Jenffer P, Limat L (1995) Wetting on heterogeneous surfaces: Experiments in an imperfect Hele-Shaw cell, Physical Review E 51–2:1291–1299

    Article  Google Scholar 

  47. Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications, Exp. in Fluids 37:375–384

    Article  Google Scholar 

  48. Bourdon CJ, Olsen MG, Gorby AD (2004) Power-filter technique for modifying depth of correlation in microPIV experiments, Exp. in Fluids 37:263–271

    Article  Google Scholar 

  49. Park JS, Cjoi CK, Kihm KD (2004) Optically sliced micro-PIV using confocal laser scanning microscopy (CLSM), Exp. in Fluids 37:105–119

    Google Scholar 

  50. Bau HH, Pfahler JN (2001) Experimental observations of liquid flow in micro conduits, 39th AIAA Aerospace Sciences Meeting and Exhibit (2001–1), AIAA 2001–0722

    Google Scholar 

  51. Peng XF, Tien Y, Lee DJ (2001) Bubble nucleation in microchannels: statistical mechanics approach, Int. J. Heat Mass Transfer 44:2957–2964

    Article  MATH  Google Scholar 

  52. Kroeker CJ, Soliman HM, Ormiston SJ (2004) Three-dimensional thermal analysis of heat sinks with circular cooling micro-channels, Int. J. Heat and Mass Transfer 44:4733–4744

    Article  Google Scholar 

  53. Steinke ME, Kandlikar SG (2004) Control and effect of dissolved air in water during flow boiling in microchannels, Int. J. Heat and Mass Transfer 47:1925–1935

    Article  Google Scholar 

  54. Tchikanda SW, Nilson RH, Griffiths SK (2004) Modeling of pressure and shear-driven flows in open rectangular microchannels, Int. J. Heat and Mass Transfer 47:527–538

    Article  MATH  Google Scholar 

  55. Koizumi Y, Ohtake H, Sakurai H (2004) Study on micro heat transport device, Proc. JSMF Annual Meeting, Okayama August 5–7:345–346

    Google Scholar 

  56. Li J, Cheng P (2004) Bubble cavitation in a microchanne, Int. J. Heat Mass Transfer 47:2689–2698

    Article  MathSciNet  MATH  Google Scholar 

  57. Nagayama G, Cheng P (2004) Effects of interface wettability on microscale flow by molecular dynamics simulation. Int. J. Heat Mass Transfer 47:501–513

    Article  MATH  Google Scholar 

  58. Siegel NP, Ellis MW, Nelson DJ, von Spakovsky MR (2004) A two-dimensional computational model of a PEMFC with liquid water transport. J. Power Sources 128:173–184

    Article  Google Scholar 

  59. Kuksenok O, Yeomans JM, Balazs AC (2002) Using patterned substrates to promote mixing in microchannels. Physical Review E 65(031502):1–8

    Google Scholar 

  60. Sato Y, Irisawa G, Ishizuka M, Hishisa K, Maeda M (2003) Visualization of convective mixing in microchannel by fluorescence imaging. Measurement Sci. Tech. 14:114–121

    Article  Google Scholar 

  61. Suzuki H, Nakano M, Kasagi N, Ho C-M (2003)ISMME B22–035:397–402

    Google Scholar 

  62. Santiego JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp. Fluids 25:316–319

    Article  Google Scholar 

  63. Meinhart CD, Wereley ST, Santiego JG (1999) PIV measurements of a microchannel flow. Exp. Fluids 27:414–419

    Article  Google Scholar 

  64. Meinhart CD, Wereley ST, Gray MHB (2000) Volume illumination for two-dimensional particle image velocimetry. Measurement Sci. Tech. 11:809–814

    Article  Google Scholar 

  65. Sato Y, Inaba S, Hishisa K, Maeda M (2003) Spatially averaged time-resolved particle-tracking velocimetryin microspace considering Brownian motion of submicron fluorescent particles. Exp. Fluids 35:167–177

    Article  Google Scholar 

  66. Smith ML, Long DS, Damiano ER, Ley K (2003) Near-Wall m-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophysical J. 85:637–645

    Article  Google Scholar 

  67. Secom TW, Hsu R, Pries AR (2001) Motion of red blood cells in a capillary with an endothelial surface layer: Effect of flow velocity. Am. J. Physiol. Hear. Circ. Physiol. 281:629–636

    Google Scholar 

  68. Wang V, Li W (2003) Proc. 4th ASME-JSME Joint FED Conf FEDSM2003-45067

    Google Scholar 

  69. Sethuram S, Samimy M, Lempert W (2002) Pa. Am. Inst. Aeronat. Astronaut. AIAA-2002-0690

    Google Scholar 

  70. Koito H, Takemura F, Hihara E, Matsumoto Y (2000) JSMF Annual Meeting, Sendai July 13–14, pp 177–178

    Google Scholar 

  71. Ohnari H, Harada N, Ohnari H, Nakayama T (2004) Proc. JSMF Annual Meeting, Okayama August 5–7, pp 335–336

    Google Scholar 

  72. Nakata A, Ohnari H, Ohnari H, Nakayama T (2004) Proc. JSMF Annual Meeting, Okayama August 5–7, pp 339–340

    Google Scholar 

  73. Matsuo K, yamahara Y, Oda T, Maeda K, Shakutui H, Ohnari H (2004) Proc. JSMF Annual Meeting, Okayama August 5–7, pp 341–342

    Google Scholar 

  74. Himuro S, Shakutui H, Matsuo K, Ohnari H (2004) Proc. JSMF Annual Meeting Okayama, August 5–7, pp 343–344

    Google Scholar 

  75. Lee J, Moon H, Fowler J, Schorllhammer T, Kim C-J (2002) Electrowetting and electrowetting-on-dielectric for microscale liquid handling. Sensors and Actuators A 95:259–268

    Article  Google Scholar 

  76. Karlsson R, Karlsson A, Orwar O (2003) A nanofluidic switching device. J. Am. Chem. Soc. 125:8442–8443

    Article  Google Scholar 

  77. Garnier N, Grigoriev RO, Schatz MF (2003) Optical manipulation of microscale fluid flow. Phys Rev Lett 91–5(054501):1–4

    Google Scholar 

  78. Shinohara K, Sygii Y, Aota A, Hibara A, Tokeshi M, Kitamori T, Okamoto K (2004) High-speed micro-PIV measurements of transient flow in microfluidic devices. Meas. Sci. Tecjnol. 15:1965–1970

    Article  Google Scholar 

  79. Choban ER, Markoski LJ, Wieckowski A, Kenis PJA (2004) Microfluidic fuel cell based on laminar flow. J. Power Sources 128:54–60

    Article  Google Scholar 

  80. Melli TR, de Santos JM, Kolb WB, Scriven LE (1990) Cocurrent downflow in networks of passages. Microscale Roots of Macroscale Flow Regimes. Ind. Eng. Chem. Res. 29:2367–2379

    Article  Google Scholar 

  81. Hui M-H, Blunt MJ (2000) Effects of wettability on three-phase flow in porous media. J. Phys. Chem. B 104:3833–3845

    Article  Google Scholar 

  82. Bewer T, Beckmann T, Dohle H, Mergel J, Stolten D (2004) Novel method for investigation of two-phase flow in liquid feed direct methanol fuel cells using an aqueous H2O2 solution. J. Power Sources 125:1–9

    Article  Google Scholar 

  83. Wang ZH, Wang CY, Chen KS (2001) Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells. J. Power Sources 94:40–50

    Article  Google Scholar 

  84. Tüeber K, Pocza D, Hebling C (2003) Visualization of water buildup in the cathode of a transparent PEM fuel cell. J. Power Sources 124:403–414

    Article  Google Scholar 

  85. Mench MM, Dong OL, Wang CY (2003) In situ water distribution measurements in a polymer electrolyte fuel cell. J. Power Sources 124:90–98

    Article  Google Scholar 

  86. Satija R, Jacobson DL, Arif M, Werner SA (2004) In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells. J. Power Sources 129:238–245

    Article  Google Scholar 

  87. You L, Liu H (2002) A two-phase flow and transport model for the cathode of PEM fuel cells. Int. J. Heat Mass Transfer 45:2277–2287

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Review of Nanoscale and Microscale Phenomena in Materials Processing. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics