Skip to main content

Numerical Modeling of Multiphase Flows in Materials Processing

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

This chapter discusses the numerical approaches to solving multiphase flow in materials processing. Chapter ?? already provided basic introduction to the modeling of gas–liquid phenomena. The focus in this chapter is liquid–solid systems which is prevalent in continuous casting operations. The general approach to numerical modeling is presented with reference to alloy solidification in order to provide additional examples of modeling complex multiphase systems. Such a system is complicated by the existence of an intermediate “mushy” zone due to phase transformation. Three approaches are generally used for modeling such multiphase systems namely, the continuum mixture models, two-phase models, and multi-region models. Control volume methods are usually employed for discretization of the transport equations in continuum mixture models and two-phase models, while the finite element methods (FEMs) are preferred in continuum mixture models. Multi-domain models usually involve the reduction of the partial differential equations to ordinary differential equations which are solved either analytically or numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Poulikakos D (1984) Maximum density effects on natural convection in a porous layer differentially heated in the horizontal direction. Int J Heat Mass Transf 27:2067–2075

    MATH  Google Scholar 

  2. Worster MG (1986) Solidification of an alloy from a cooled boundary. J Fluid Mech 167: 481–501

    MATH  Google Scholar 

  3. Sparrow EM, Patankar SV, Ramadhyani S (1977) Analysis of melting in the presence of natural convection in the melt region. J Heat Transf 99:520–526

    Google Scholar 

  4. Webb BW, Viskanta R (1986) Analysis of heat transfer during melting of a pure metal from an isothermal vertical wall. Numer Heat Transf 9:539–558

    Google Scholar 

  5. Wolff F, Viskanta R (1995) Solidification of a pure metal at a vertical wall in the presence of liquid superheat. Int J Heat Mass Transf 31:1735–1744

    Google Scholar 

  6. Kroeger PG, Ostrach S (1974) The solution of a two-dimensional freezing problem including convection effects in the liquid region. Int J Heat Mass Transf 17:1191–1207

    MATH  Google Scholar 

  7. Sparrow EM, Ramsey JW, Kemink RG (1979) Freezing controlled by natural convection. J Heat Transf 101:578–584

    Google Scholar 

  8. Bennon WD, Incropera FP (1987) A continuum model for momentum, heat and species transport in binary solid–liquid phase change system-I. Model formulation. Int J Heat Mass Transf 30(10):2161–2170

    MATH  Google Scholar 

  9. Bennon WD, Incorpera FP (1987) A continuum model for momentum, heat and species transport in binary solid–liquid phase change system: II. Application to solidification in a rectangular cavity. Int J Heat Mass Transf 30:2171–2187

    Google Scholar 

  10. Bennon WD, Incropera FP (1988) Numerical analysis of binary solid–liquid phase change using a continuum model. Numer Heat Transf 13:277–296

    Google Scholar 

  11. Voller VR, Prakash C (1987) A fixed grid numerical modeling methodology for convection–diffusion mushy region phase-change problems. Int J Heat Mass Transf 308:1709–1719

    Google Scholar 

  12. Voller VR (1989) Development and application of a heat balance integral method for analysis of metallurgical solidification. Appl Math Modell 13:3–11

    MATH  Google Scholar 

  13. Voller VR, Brent AD, Prakash C (1989) The modeling of heat, mass and solute transport in solidification system. Int J Heat Mass Transf 32:1719–1731

    Google Scholar 

  14. Voller VR, Swaminathan CR (1990) Fixed grid techniques for phase change problems: a review. Int J. Numer Meth Eng 30:875–898

    MATH  Google Scholar 

  15. Patankar SV (1980) Numerical heat transfer and fluid flow. McGraw-Hill, New York

    Google Scholar 

  16. Brent AD, Voller VR, Reid KJ (1988) Enthalpy porosity technique for modeling convection–diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 13:297–318

    Google Scholar 

  17. Amberg G (1991) Computation of macrosegregation in an iron–carbon cast. Int J Heat Mass Transf 341:217–227

    Google Scholar 

  18. Shahani H, Amberg G, Fredriksson H (1992) On the formation of macrosegregations in unidirectionally solidified Sn–Pb and Pb–Sn alloys. Metall Trans A 23A:1992–2301

    Google Scholar 

  19. Prakash C, Voller V (1989) On the numerical solution of continuum mixture model equations describing binary solid–liquid phase change. Numer Heat Transf Part B 15:171–189

    MATH  Google Scholar 

  20. Beckermann C, Viskanta R (1988).Double-diffusive convection during dendritic solidification of a binary mixture. PCH 10:195–213

    Google Scholar 

  21. Christenson MS, Bennon WD, Incropera FP (1989) Solidification of an aqueous ammonium chloride solution in a rectangular cavity-II. Comparison of predicted and measured results. Int J Heat Mass Transf 32(1):69–79

    Google Scholar 

  22. Prescott PJ, Incropera FP (1991) Numerical simulation of a solidifying Pb–Sn alloy: the effects of cooling rate on thermosolutal convection and macrosegregation. Metall Mater Trans B 22B:529–540

    Google Scholar 

  23. Yoo H, Viskanta R (1992) Effect of anisotropic permeability on the transport process during solidification of a binary mixture. Int J Heat Mass Transf 35(10):2335–2346

    Google Scholar 

  24. Chiang KC, Tsai HL (1992) Interaction between shrinkage-induced fluid flow and natural convection during alloy solidification. Int J Heat Mass Transf 35(7):1771–1778

    Google Scholar 

  25. Chen JH, Tsai HL (1993) Inverse segregation for a unidirectional solidification of aluminum–copper alloys. Int J Heat Mass Transf 36(12):3069–3075

    MathSciNet  MATH  Google Scholar 

  26. Prescott PJ, Incropera FP, Gaskell DR (1994) Convective transport phenomena and macrosegregation during solidification of a binary metal alloy: II – experiments and comparisons with numerical predictions. Trans ASME 116:742–749

    Google Scholar 

  27. Diao QZ, Tsai, HL (1994) Modeling of the formation of under-riser macrosegregation during solidification of binary alloys. Metall Mater Trans A 25A:1051–1062

    Google Scholar 

  28. Schneider MC, Beckermann C (1995) A numerical study of the combined effects of microsegregation, mushy zone permeability and flow, caused by volume contraction and thermosolutal convection, on macrosegregation and eutectic formation in binary alloy solidification. Int J Heat Mass Transf 38:3455–3473

    Google Scholar 

  29. Ilegbusi OJ, Mat MD (1997) A hybrid model of the mushy region in phase-change problems. J Mater Process Manuf Sci 6:1–15

    Google Scholar 

  30. Ilegbusi OJ, Mat MD (1998) Modeling flowability of mushy zone with a hybrid model utilizing coherency solid fraction. Mater Sci Eng A A247:135–141

    Google Scholar 

  31. Rady MA, Nada SA (1998) Solidification of hypereutectic binary alloys with buoyancy and surface tension driven natural convection. Heat Mass Transf 34:337–347

    Google Scholar 

  32. Vreeman CJ, Krane MJM, Incropera FP (2000) The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys Part I: model development. Int J Heat Mass Transf 43:677–686

    MATH  Google Scholar 

  33. Mat MD, Ilegbusi OJ (2000) Prediction of macrosegregation in binary alloy solidification using a non-Newtonian mushy model. J. Mater Process Manuf Sci 8:188–217

    Google Scholar 

  34. Raw WY, Lee SL (1991) Application of weighting function scheme on convection-conduction phase cage problems. Int J Heat Mass Transf 34:1503–1513

    Google Scholar 

  35. Prescott PJ, Incropera FP (1994) Convective transport phenomena and macrosegregation during solidification of a binary metal alloy: I. Numerical predictions. J Heat Transf 116:735–741

    Google Scholar 

  36. Krane MJM, Incropera FP (2000) The effect of free-floating dendrites and convection on macrosegregation in direct chill cast aluminum alloys Part II: predictions for Al–Cu and Al–Mg alloys. Int J Heat Mass Transf 43:687–704

    Google Scholar 

  37. Ni J, Beckermann C (1991) A volume-averaged two-phase model for transport phenomena during solidification. Metall Mater Trans B 22B:349–361

    Google Scholar 

  38. Wang CY, Beckermann C (1993) Single- vs. dual-scale volume averaging for heterogeneous multiphase systems. Int J Multiphase Flow 19:397–407

    MATH  Google Scholar 

  39. Wang CY, Beckermann C (1993) A multiphase solute diffusion model for dendritic alloy solidification. Metall Trans A 24:2787–2802

    Google Scholar 

  40. Wang CY, Beckermann C (1993) A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification. Mater Sci Eng A 171:199–211

    Google Scholar 

  41. Wang CY, Beckermann C (1994) Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification. Metall Trans A 25:1081–1093

    Google Scholar 

  42. Wang CY, Beckermann C (1995) Computer simulations of microstructural development in dendritic alloy solidification with convection. In: Voller VR, Marsh SP, El-Kaddah N (eds) Materials processing in the computer age – II. The Minerals, Materials Society, Warrendale, PA, pp 129–143

    Google Scholar 

  43. Reddy AV, Beckermann C (1995) Simulation of the effects of thermosolutal convection, shrinkage induced flow and solid transport on macrosegregation and equiaxed grain size distribution in a Dc continuous aast Al–Cu round. In: Voller VR, Marsh SP, El-Kaddah N (eds) Materials processing in the computer age – II. The Minerals, Materials Society, Warrendale, PA, pp 89–102

    Google Scholar 

  44. Reddy AV, Beckermann C (1997) Modeling of macrosegregation due to thermosolutal convection and contraction-driven flow in direct chill continuous casting of an Al–Cu round ingot. Metall Mater Trans B 28:479–489

    Google Scholar 

  45. Beckermann C, Ni J (1996) Simulation of sedimentation in globulitic alloy solidification. Int J Heat Mass Transf 23(3):315–324.

    Google Scholar 

  46. Spalding DB (1981) Numerical computation of multiphase flow and heat transfer. In: Taylor C, Morgan K (eds) Recent advances in numerical methods in fluids, vol 1. Pineridge Press, Swansea, pp 139–167

    Google Scholar 

  47. Rosten H, Spalding DB (1986) PHOENICS beginner’s guide and user’s manual. CHAM Limited Technical Report TR/100, London, UK

    Google Scholar 

  48. Thévoz Ph, Desbiolles JL, Rappaz M (1989) Modeling of equiaxed microstructure formation in casting. Metall Mater Trans A 20A:311–322

    Google Scholar 

  49. Voller VR, Beckermann C (1999) A unified model of microsegreegation and coarsening. Metall Mater Trans A 30A:2183–2189

    Google Scholar 

  50. Crivelli LA, Idelsohn SR (1986) A temperature-based finite element solution for phase-change problems. Int J Numer Meth Eng 23:99–119

    MathSciNet  MATH  Google Scholar 

  51. Felicelli SD, Heinrich JC, Poirier DR (1991) Simulation of freckles during vertical solidification of binary alloy. Metall Trans B 22:847–859

    Google Scholar 

  52. Nandapurkar PJ, Poirier DR, Heinrich JC (1991) Momentum equation for dendritic solidification. Numer Heat Transf 19A:297–311

    Google Scholar 

  53. Usmani SA, Lewis WR, Seetharamu NK (1992) Finite element modeling of natural convection-controlled change phase. Int J Numer Meth Fluids 14:1019–1036

    MATH  Google Scholar 

  54. Felicelli SD, Heinrich JC (1993) Numerical model for dendritic solidification of binary alloys. Numer Heat Transf B 23:461–481

    Google Scholar 

  55. Ruan Y, Li BQ, Liu JC (1995) A finite element method for steady-state conduction – advection phase change problems. Finite Elements Anal Des 19:153–168

    MATH  Google Scholar 

  56. Chen Y, Im YT, Lee J (1995) Finite element simulation of solution with momentum, heat and species transport. J Mater Process Tech 48:571–579

    Google Scholar 

  57. Felicelli SD, Heinrich JC, Poirier DR (1998) Three-dimensional simulations of freckles in binary alloys. J Cryst Growth 191:879–888

    Google Scholar 

  58. Ravindran K, Brown SGR, Spittle JA (1999) Prediction of the effective thermal conductivity of three-dimensional dendritic regions by the finite element method. Mater Sci Eng 269 A:90–97

    Google Scholar 

  59. Nigro N, Huespe A, Fachiotti (2000) Phasewise numerical integration of finite element method applied to solidification processes. Int J Heat Mass Transf 43:1053–1066

    Google Scholar 

  60. Comini G, Del Guidice S, Lewis RW, Zienkiewicz (1974) Finite element solution of non-linear heat conduction problems with special reference to phase change. Int J Numer Meth Eng 8:613–624

    Google Scholar 

  61. Chorin JA (1968) Numerical solution of Navier–Stokes equations. Math Comp 22:745–762

    MathSciNet  MATH  Google Scholar 

  62. Ramaswamy B, Jue TC (1992) Some recent trends and developments in finite element analysis for incompressible thermal flows. Int J Numer Meth Eng 35:675–692

    Google Scholar 

  63. Ohnaka I (1985) Introduction to analysis of heat transfer and solidification by computer-application for casting process. Maruzem, Tokyo

    Google Scholar 

  64. Thomas BG, Samarasekera IV, Brimacombe JK (1984) Comparison of numerical modeling techniques for complex, two-dimensional, transient heat conduction problems. Metall Trans 15B:307–318

    Google Scholar 

  65. Dantzig JA (1989) Modeling liquid–solid phase changes with melt convection Int J Numer Meth Eng 28:1769–1785

    Google Scholar 

  66. Rolph WDIII, Bathe KJ (1982) An efficient algorithm for analysis of non-linear Heat transfer with phase change. Int J Numer Meth Eng 18:119–134

    MATH  Google Scholar 

  67. Lewis RW, Roberts PM (1987) Finite element simulation of solidification problems. Appl Sci Res 44:61–92

    MATH  Google Scholar 

  68. Pham QT (1986) The use of lumped capacitances in the finite-element solution of heat conduction with phase change. Int J Heat Mass Transf 29:285–292

    MATH  Google Scholar 

  69. Ortega JM, Rheinboldt WC (1980) Iterative solution of nonlinear equations in several variables. Academic Press, New York

    Google Scholar 

  70. Lees M (1966) A linear three-level difference scheme for quasi-linear parabolic equations. Math Comput 20:516–622

    MathSciNet  MATH  Google Scholar 

  71. Pardo E, Weckman DC (1990) A fixed grid finite element technique for modeling phase change in steady-state conduction-advection problems. Int J Numer Meth Eng 29(5):969–984

    MATH  Google Scholar 

  72. Marshall RS, Heinrich JC, Zienkiewicz OC (1978) Natural convection in a square enclosure by a finite element, penalty function method, using primitive fluid variables. Numer Heat Transf 1:315–330

    Google Scholar 

  73. Heinrich JC, Marshall RS (1981) Viscous incompressible flow by a penalty function finite element method. Comput Fluids 9:73–83

    MATH  Google Scholar 

  74. Heinrich JC, Yu CC (1988) Finite element simulation of buoyancy-driven flows with emphasis on natural convection in a horizontal circular cylinder. Comput Meth Appl Mech Eng 69:1–27

    MATH  Google Scholar 

  75. Ganesan S, Poirier DR (1990) Conservation of mass and momentum for the flow of interdendritic liquid during solidification. Metall Trans B 21B:173–181

    Google Scholar 

  76. Steven G (1982) Internally Discontinuous Finite elements for moving interface problems. Int J Numer Methods Eng 18:(4), 569–582

    MathSciNet  MATH  Google Scholar 

  77. Fachinotti VD, Cardono A, Huespe AE (1999) Fast convergent and accurate temperature model for phase-change heat conduction. Int J Numer Meth Eng 44:1863–1884

    MATH  Google Scholar 

  78. Miller K, Miller RN (1981) Moving finite elements. I: SIAM J Numer Anal 18:1019–1057

    MATH  Google Scholar 

  79. Lynch DR, O’Neill K (1981) Continuously deforming finite elements for the solution of parabolic problems, with and without phase change. Int J Numer Meth Eng 17:81–96

    MathSciNet  MATH  Google Scholar 

  80. Zabaras N, Ruan Y (1989) A deforming finite element method for analysis of inverse Stefan problems. Int J Numer Meth Eng 28:295–313

    MATH  Google Scholar 

  81. Zabaras N, Ruan Y (1990) Moving and deforming finite-element simulation of two-dimensional Stefan problems. Commun Appl Numer Meth 6:495–506

    MATH  Google Scholar 

  82. Ruan Y, Liu JC, Ricmond O (1993) A deforming finite element method for analysis of alloy solidification problems. Finite Elem Anal Des 12:49–63

    Google Scholar 

  83. Tszeng TC, Im YT, Kobayashi S (1989) Thermal analysis of solidification by the temperature recovery method. Int J Mach Tools Manuf 29:107

    Google Scholar 

  84. Chen YH, Im YT, Lee ZH (1991) Three dimensional finite element analysis with phase change by temperature recovery method. Int J Mach Tools Manuf 31:1

    Google Scholar 

  85. Li BQ (1997) Numerical simulation of flow and temperature evolution during the initial phase of steady-state solidification. J Mater Process Technol 71:402–413

    Google Scholar 

  86. Worster MG (1991) Natural convection in a mushy layer. J Fluid Mech 167:481–501

    Google Scholar 

  87. Chiareli AOP, Huppert HE, Worster MG (1994) Segregation and flow during the solidification of alloy. J Cryst Growth 139:134–146

    Google Scholar 

  88. Paradies CJ, Smith RN, Glicksman ME (1997) The influence of convection during solidification on fragmentation of the mushy zone of a model alloy. Metall Mater Trans A 28A:875–883

    Google Scholar 

  89. Huppert HE, Worster MG (1985) Dynamic solidification of a binary melt. Nature 314:703–707

    Google Scholar 

  90. Maugis P, Hopfe WD, Morral JE, Kirkaldy JS (1996) Degeneracy of diffusion paths in ternary, two-phase diffusion couples. J Appl Phys 79:7592

    Google Scholar 

  91. Maugis P, Hopfe WD, Morral JE, Kirkaldy JS (1997) Multiple interface velocity solutions for ternary biphase infinite diffusion couples. Acta Mater 45:1941

    Google Scholar 

  92. Coriell SR, McFadden GB, Sekerka RF, Boettinger WJ (1998) Multiple similarity solutions for solidification and melting. J Cryst Growth 191:573–585

    Google Scholar 

  93. Coates DE, Kirkaldy JS (1971) Morphological stability of alpha.-b phase interfaces in the copper-zinc-nickel system at 775.deg. Metall Trans 2:3467

    Google Scholar 

  94. Hills RN, Loper DE, Roberts PH (1983) A thermodynamically consistent model of a mushy zone. Q J Mech Appl Math 36:505–539

    MATH  Google Scholar 

  95. Fowler AC (1985) The formation of freckles in binary alloys. IMA J Appl Math 35:159–174

    MATH  Google Scholar 

  96. Amberg G, Homsy GM (1993) Nonlinear analysis of buoyant convection in binary solidification with application to channel formation. J Fluid Mech 252:79–98

    MATH  Google Scholar 

  97. Chen F, Yang TY, Lu JW (1993) Influence of convection on solidification of binary solutions cooling from below. J Appl Phys 74:7531

    Google Scholar 

  98. Roberts PH, Loper DE (1983) Towards a theory of the structure and evolution of a dendrite layer. In: Soward AM (ed) Stellar and planetary magnetism. Gordon and Breach, New York, pp 329–349

    Google Scholar 

  99. Worster MG (1992) Instabilities of the liquid and mushy regions during solidification of alloys. J Fluid Mech 237:649–669

    MATH  Google Scholar 

  100. Langer JS (1980) Instabilities and pattern formation in crystal growth. Rev Appl Math 52:1

    Google Scholar 

  101. Kerr RC, Woods AW, Worster MG, Huppert HE (1990) Solidification of an alloy cooled from above part 2. Non-equilibrium interface kinetic. J Fluid Mech 217:331–348

    MATH  Google Scholar 

  102. Anderson DM, Worster MG (1995) Weakly nonlinear analysis of convection in mushy layers during the solidification of binary alloys. J Fluid Mech 302:307

    MathSciNet  MATH  Google Scholar 

  103. Schultze TP, Worster MG (1998) A numerical investigation of steady convection in mushy layers during the directional solidification of binary alloys. J Fluid Mech 356:199

    Google Scholar 

  104. Loper DE (2001) On the boundary conditions at a mush–melt interface. J Cryst Growth 222:655–666

    Google Scholar 

  105. Beavers GS, Joseph DD (1968) Boundary conditions at a naturally permeable wall. J Fluid Mech 30:197

    Google Scholar 

  106. Taylor GI (1971) A model for the boundary condition of a porous material Part 1. J Fluid Mech 49:319

    MATH  Google Scholar 

  107. Saffman PG (1971) On the boundary condition at the interface of a porous medium. St Appl Math 50:93

    MATH  Google Scholar 

  108. Lu JW, Chen F (1997) Assessment of mathematical models for the flow in directional solidification. J Cryst Growth 171:601–613

    Google Scholar 

  109. Coriell SR, Cordes MR, Boettinger WJ, Sekerka RF (1980) Convective and interfacial instabilities during unidirectional solidification of binary alloy. J Cryst Growth 49:13–28

    Google Scholar 

  110. Keller HB (1976) Numerical solution of two points boundary value problems. Regional conference series in applied mathematics. SIAM, Philadelphia, PA

    Google Scholar 

  111. Powell MJD (1970) A hybrid method for nonlinear equations. In Numerical methods for nonlinear algebraic equations. In: Rabinowitz PH (ed) Gordon and Breach, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Numerical Modeling of Multiphase Flows in Materials Processing. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics