Skip to main content

Introduction

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

The flow pattern and local turbulence structures largely determine the performance characteristics of metallurgical operations. The transport phenomena in these processes typically have the following basic features:

  • Flows are complex and multiphase with strong turbulence.

  • Fluids are usually opaque with very high temperature. For example, the melting point of molten metal is typically above 1,000 ∘C.

  • In most cases, fluid flows are coupled with heat and mass transfer.

  • Fluid flows are usually accompanied by metallurgical reactions.

  • The walls of the reactors and pipelines are usually poorly wetted by molten metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Szekely J (1979) Fluid flow phenomena in metals processing. Academic, New York

    Google Scholar 

  2. ISIJ (1984) Recent development in steelmaking technologies using gas injection. In: Proc. 100th and 101st Nishiyama memorial lecture, ISIJ, Tokyo

    Google Scholar 

  3. Szekely J, Carlsson G, Helle L (1988) Ladle metallurgy. Springer, New York

    Google Scholar 

  4. Szekely J, Ilegbusi OJ (1989) The physical and mathematical modeling of tundish operations. Springer, Berlin

    Book  Google Scholar 

  5. Sahai Y, St. Pierre GR (1992) Advances in transport processes in metallurgical systems. Elsevier, Amsterdam, pp 260–263

    Google Scholar 

  6. Ilegbusi OJ, Iguchi M, Wahnshiedler W (1999) Mathematical and physical modeling in materials processing operations. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

  7. Perry RH, Chilton CH, Kirkpatrick SD (1963) Chemical engineer’s handbook. McGraw-Hill, New York

    Google Scholar 

  8. Ozawa Y, Mori K, Sano M (1981) Behavior of injected gas observed at the exit of a submerged orifice in liquid metal. Tetsu-to-Hagane 67:2655–2664

    Google Scholar 

  9. Mori K, Sano M (1981) Process kinetics in injection metallurgy. Testsu-to-Hagane 67: 672–695

    Google Scholar 

  10. Ruzika MC, Drahos J, Zahradnik J, Thomas NH (1997) Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows. Int J Multiphase Flow 23(4):671–682

    Article  Google Scholar 

  11. Chen K, Richter HJ (1997) Instability analysis of the transition from bubbling to jetting in a gas injected into a liquid. Int J Multiphase Flow 23(4):699–712

    Article  MATH  Google Scholar 

  12. Kawakami M, Hosono S, Takahashi K, Ito K (1992) Bubble dispersion phenomena in water, mercury, molten iron and molten copper baths. Tetsu-to-Hagane 78:267–274

    Google Scholar 

  13. Tacke TH, Schubert HG, Weber DJ, Schwerdfeger K (1985) Characteristics of round vertical gas bubble jets. Metall Trans B 16:263

    Article  Google Scholar 

  14. Castillejos AH, Brimacombe JK (1987) Measurement of physical characteristics of bubbles in gas-liquid plumes: Part II. Local properties of turbulent air-water plumes in vertically injected jets. Metall Trans B 18:659–671

    Google Scholar 

  15. Iguchi M, Kawabata H, Nakajima K, Morita Z (1995) Measurement of bubble characteristics in a molten iron bath at 1600∘C using an electroresistivity probe. Metall Mater Trans B 26:67–74

    Article  Google Scholar 

  16. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New York

    Google Scholar 

  17. Iguchi M, Chihara T, Takanashi N, Ogawa Y, Tokumitsu N, Morita Z (1995) X-ray fluoroscopic observation of bubble characteristics in a molten iron bath. ISIJ Int 35:1354–1361

    Article  Google Scholar 

  18. Iguchi M, Nakatani T, Kawabata H (1997) Development of a multineedle electroresistivity probe for measuring bubble characteristics in molten metal baths. Metall Mater Trans B 28:409–416

    Article  Google Scholar 

  19. Iguchi M, Nakatani T, Tokunaga H (1997) The shape of bubbles rising near the nozzle exit in molten metal baths. Metall Mater Trans B 28:417–423

    Article  Google Scholar 

  20. Iguchi M, Ueda H, Uemura T (1995) Bubble and liquid flow characteristics in a vertical bubbling jet. Int J Multiphase Flow 21:861–873

    Article  MATH  Google Scholar 

  21. Schlichting H (1979) Boundary layer theory, 7th edn (trans: Kestin J). Mcgraw-Hill, New York

    Google Scholar 

  22. Hinze JO (1975) Turbulence, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  23. Mazumdar D, Guthrie RIL (1995) The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int 35:1–20

    Article  Google Scholar 

  24. Mazumdar D, Guthrie RIL (1994) ISS Trans 21:89–96

    Google Scholar 

  25. Iguchi M, Nakamura K, Tsujino R (1998) Mixing time and fluid flow phenomena in liquids of varying kinematic viscosities agitated by bottom gas injection. Metall Mater Trans B 29:569–575

    Article  Google Scholar 

  26. Nakanishi K, Fujii T, Szekely J (1975) Ironmaking Steelmaking 2–3:193–197

    Google Scholar 

  27. MacDougal G, Ockrent C (1942) Surface energy relations in liquid/solid systems. I. The adhesion of liquids to solids and a new method of determining the surface tension of liquids. Proc R Soc Lond A 180:151–173

    Google Scholar 

  28. Shoji M, Zhang XY (1992) Study of contact angle hysteresis: In relation to boiling surface wettability. Trans Jpn Soc Mech Eng B 58:1853–1859

    Article  Google Scholar 

  29. Fukai J, Shibata Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: Experiment and modeling. Phys Fluids 7:236

    Article  Google Scholar 

  30. Ishibashi M, Shiraishi K, Yamamoto S, Shimada M (1975) Tetsu-to-Hagane 61:S. 111

    Google Scholar 

  31. Ishibashi M, Yamamoto S (1979) Tetsu-to-Hagane 65:A. 133

    Google Scholar 

  32. Kitamura S, Miyamoto K, Tsujino R (1994) The Evaluation of gas-liquid reaction rate at bath surface by the gas adsorption and desorption tests. Tetsu-to-Hagane 80:101–106

    Google Scholar 

  33. Kitamura S, Yano M, Harashima K, Tsutsumi N (1994) Decarburization model for vacuum degasser. Tetsu-to-Hagane 80:213–218

    Google Scholar 

  34. Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  35. Azbel D (1981) Two-phase flows in chemical engineering. Cambridge University Press, Cambridge, p 19

    Google Scholar 

  36. Akagawa K (1974) Gas-liquid two-phase flow. Corona Pub. Co. Ltd., Tokyo

    Google Scholar 

  37. Hetsroni G (1982) Handbook of multiphase systems. Hemisphere, Washington

    Google Scholar 

  38. JSME (1989) Handbook of gas-liquid two-phase flow technology. Corona Pub. Co. Ltd., Tokyo

    Google Scholar 

  39. Ueda T (1989) Gas-liquid two-phase flow-fluid flow and heat transfer. Yokendo Pub. Co. Ltd., Tokyo, pp 193–199

    Google Scholar 

  40. ISIJ (1996) History of steel continuous casting technology in Japan. ISIJ, Tokyo

    Google Scholar 

  41. Yokoya S, Takagi S, Souma H, Iguchi M, Asako Y, Hara S (1998) Removal of inclusion through bubble curtain created by swirl motion in submerged entry nozzle. ISIJ Int 38:1086–1092

    Article  Google Scholar 

  42. JSPS (1994) 19th Committee: recent developments in investigations on the removal of nonmetallic inclusions. JSPS, Keyo, Tokyo

    Google Scholar 

  43. Zhe W, Mukai K, Matsuoka K (1997) Water model experiment for the behaviors of bubbles and liquid flow on the inside of the nozzle and mold of continuous casting process. CAMP ISIJ 10:68–71

    Google Scholar 

  44. Iguchi M, Terauchi Y (2001) Boundaries among bubbly and slug flow regimes in air–water two-phase flows in vertical pipe of poor wettability. Int J Multiphase Flow 27:729–735

    Article  MATH  Google Scholar 

  45. Watanabe K (2000) Jpn J Multiphase Flow 14(1):208–211

    Google Scholar 

  46. Terauchi Y, Iguchi M, Kosaka H, Yokoya S, Hara S (1999) Wettability effect on the flow pattern of air-water two-phase flows in a vertical circular pipe. Tetsu-to-Hagane 85:645–651

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). Introduction. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics