Skip to main content

Controlled Cavitation for Scale-Free Heating, Gum Hydration and Emulsification in Food and Consumer Products

  • Chapter
  • First Online:
Ultrasound Technologies for Food and Bioprocessing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Cavitation is defined as the sudden formation and collapse of bubbles in liquid by means of a mechanical force. As bubbles rapidly form and collapse, pressurized shock waves, localized heating events and tremendous shearing forces occur. As microscopic cavitation bubbles are produced and collapse, shockwaves are given off into the liquid, which can result in heating and/or mixing, similar to ultrasound. These shockwaves can provide breakthrough benefits for the heating of liquids without scale buildup and/or the mixing of liquids with other liquids, gases or solids at the microscopic level to increase the efficiency of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasundaram, B., and Pandit, A. B. (2001). Selective release of invertase by hydrodynamic cavitation. Biochemical Engineering Journal, 8, 251–256.

    Article  CAS  Google Scholar 

  • Center for Food Safety and Applied Nutrition. (2000). Kinetics of microbial inactivation for alternative food processing technologies. Retrieved July 1, 2004 from vm.cfsan.fda.gov on the World Wide Web: http://vm.cfsan.fda.gov/∼comm/ift-toc.htm

  • Deliza, R., Rosenthal, A., Abadio, F. B. D., Silva, C. H. O., and Castillo, C. (2005). Application of high pressure technology in the fruit juice processing: Benefits perceived by consumers. Journal of Food Engineering, 67, 241–246.

    Article  Google Scholar 

  • Earnshaw, R. G. (1998). Ultrasound: A new opportunity for food preservation. In: Povey, M. J. W., and Mason, T. J. (eds.), Ultrasound in food processing, pp. 183–192. London SE1 8HN, UK, Blackie Academic and Professional.

    Google Scholar 

  • Earnshaw, R. G. Appleyard, J., and Hurst, R. M. (1995). Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology, 28, 197–219.

    Article  CAS  Google Scholar 

  • Frizzell, L. A. (1988). Biological effects of acoustic cavitation. In: Suslick, K. S. (ed.), Ultrasound: Its chemical, physical, and biological effects, pp. 287–304. New York, NY, VCH.

    Google Scholar 

  • Geciova, J., Bury, D., and Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry-a review. International Dairy Journal, 12, 541–553.

    Article  CAS  Google Scholar 

  • Gogate, P. R. (2002). Cavitation: an auxiliary technique in wastewater treatment schemes. Advances in Environmental Research, 6, 335–358.

    Article  CAS  Google Scholar 

  • Jay, J. (1998). Modern food microbiology, 5th edn, 661pp. Maryland, Aspen.

    Google Scholar 

  • Jyoti, K. K., and Pandit, A. B. (2001). Water disnfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 7, 201–212.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., and Pandit, A. B. (2004). Ozone and cavitation for waster disinfection. Biochemical Engineering Journal, 18, 9–19.

    Article  CAS  Google Scholar 

  • Kazem, B., Armstead, D. A., Mancosky, D. G., Lien, S. J., and Verrill, C. J. (2003). Heating Black Liquor by partial oxidation with controlled cavitation as a means to reduce evaporator fouling. Chicago, IL, TAPPI Pulping Conference.

    Google Scholar 

  • Konja, G., and Lovric, T. (1993). Berry fruit juices. In: Nagy, S, Chen, C. S., and Shaw, P. E. (eds.), Fruit juice processing technology, pp. 436–514. Auburndale, FL, Agscience.

    Google Scholar 

  • Leighton, T. G. (1998). The principles of cavitation. In: Povey, M. J. W., and Mason, T. J. (eds.), Ultrasound in food processing, pp. 151–182. London SE1 8HN, UK, Blackie Academic and Professional.

    Google Scholar 

  • Liltved, H., and Cripps, S. J. (1999). Removal of particle-associated bacteria by prefiltration and ultraviolet irradiation. Aquaculture Research, 30, 445–450.

    Article  Google Scholar 

  • Lopez-Malo, A., and Palou, E. (2005). Ultraviolet light and food preservation. In: Barbosa-Canovas, G. V., Tapia, M. S., and Cano, M. P. (eds.), Novel food processing technologies, pp. 405–422. Boca Raton, FL, CRC Press LLC.

    Google Scholar 

  • Mason, T. J., and Lorimer, J. P. (2002). Applied sonochemistry: The uses of power ultrasound in chemistry and processing, 303 pp. Weinheim, Germany, Wiley-VCH Verlag GmbH.

    Google Scholar 

  • McLellan, M. R., and Acree, T. (1993). Grape juice. In: Nagy, S., Chen, C. S., and Shaw, P. E. (eds.), Fruit juice processing technology, pp. 318–333. Auburndale, FL, Agscience.

    Google Scholar 

  • Middelberg, A. P. J. (1995). Process-scale disruption of microorganisms. Biotechnology Advances, 13(3), 491–551.

    Article  CAS  Google Scholar 

  • Milly, P. J., Toledo, R. T., Chen, J., and Kazem, B. (2007a). Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods. Journal of Food Science, 72(9), M407–M413.

    Article  CAS  Google Scholar 

  • Milly, P. J., Toledo, R. T., Harrison, M. A., and Armstead, D. (2007b). Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods. Journal of Food Science, 72(9), M414–M422.

    Article  CAS  Google Scholar 

  • Milly, P. J., Toledo, R. T., Kerr, W. L., and Armstead, D. (2008). Hydrodynamic cavitation: characterization of a novel design with energy considerations for the inactivation of Saccharomyces cerevisiae in apple juice. Journal of Food Science, 73(6), M298–M303.

    Article  CAS  Google Scholar 

  • Morris, C. E. (2000). US developments in non-thermal juice processing. Food Engineering and Ingredients, 25(6), 26–28.

    Google Scholar 

  • National Advisory Committee on Microbiological Criteria for Foods. (2004). Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization: UV radiation, 66pp.

    Google Scholar 

  • Piyasena, P., Mohareb, E., and McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87, 207–216.

    Article  CAS  Google Scholar 

  • Rye, G. G., and Mercer, D. G. (2003). Changes in headspace volatile attributes of apple cider resulting from thermal processing and storage. Food Research International, 36(2), 167–174.

    Article  CAS  Google Scholar 

  • Save, S. S., Pandit, A. B., and Joshi, J. B. (1994). Microbial cell disruption: Role of cavitation. Chemical Engineering Journal, 55, B67–B72.

    Google Scholar 

  • Save, S. S., Pandit, A. B., and Joshi, J. B. (1997). Use of hydrodynamic cavitation for large scale microbial cell disruption. Trans IChemE, 75(C), 41–49.

    Google Scholar 

  • Shahidi, F., and Naczk, M. (2004). Phenolics in food and nutraceuticals, 558pp. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Shahidi, F., and Weerasinghe, D. K. (2004). Nutraceutical beverages: An overview. In: Shahidi, F., and Weerasinghe, D. K. (eds.), Nutraceutical beverages: Chemistry, nutrition, and health effects, pp. 1–5. Washington, DC, American Chemical Society.

    Google Scholar 

  • Shomer, R., Manheim, C. H., and Cogan, U. (1994). Thermal death parameters of orange juice and effect of minimal heat treatment and carbon dioxide on shelf-life. Journal of Food Processing and Preservation, 18(4), 305–315.

    Article  Google Scholar 

  • Sivakumar, M., and Pandit, A. B. (2002). Wastewater treatment: a novel energy efficient hydrodynamic cavitational technique. Ultrasonic Sonochemistry, 9, 123–131.

    Article  CAS  Google Scholar 

  • Sommer, R., Lhotsky, M., Haider, T., and Cabaj, A. (2000). UV inactivation, liquid-holding recovery and photoreactivation of Escherichia coli O157 and other pathogenic Escherichia coli strains in water. Journal of Food Protection, 63, 1015–1020.

    CAS  Google Scholar 

  • Vasavada, P. C. (2003). Alternative processing technologies for the control of spoilage bacteria in fruit juices and beverages. In: Foster, T., and Vasavada, P. C. (eds.), Beverage quality and safety, pp. 73–93. Boca Raton, FL, CRC Press LLC.

    Google Scholar 

  • Wright, J. R., Sumner, S. S., Hackney, C. R., Pierson, M. D., and Zoecklein, B. W. (2000). Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. Journal of Food Protection, 63, 563–567.

    CAS  Google Scholar 

  • http://www.americanairandwater.com/images/DNA-UV.gif. Accessed March 2007.

  • http://rst.gsfc.nasa.gov/Intro/Part2_2a.html

  • Young, F. R. (1999). Cavitation, 418 pp. London WC2H 9HE, Imperial College.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Mancosky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mancosky, D.G., Milly, P. (2011). Controlled Cavitation for Scale-Free Heating, Gum Hydration and Emulsification in Food and Consumer Products. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_8

Download citation

Publish with us

Policies and ethics