Skip to main content

Application of Hydrodynamic Cavitation for Food and Bioprocessing

  • Chapter
  • First Online:
Ultrasound Technologies for Food and Bioprocessing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Hydrodynamic cavitation can be simply generated by the alterations in the flow field in high speed/high pressure devices and also by passage of the liquid through a constriction such as orifice plate, venturi, or throttling valve. Hydrodynamic cavitation results in the formation of local hot spots, release of highly reactive free radicals, and enhanced mass transfer rates due to turbulence generated as a result of liquid circulation currents. These conditions can be suitably applied for intensification of different bioprocessing applications in an energy-efficient manner as compared to conventionally used ultrasound-based reactors. The current chapter aims at highlighting different aspects related to hydrodynamic cavitation, including the theoretical aspects for optimization of operating parameters, reactor designs, and overview of applications relevant to food and bioprocessing. Some case studies highlighting the comparison of hydrodynamic cavitation and acoustic cavitation reactors will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anand, H., Balasundaram, B., Pandit, A. B., and Harrison, S. T. L. (2007). The effect of chemical pretreatment combined with mechanical disruption on the extent of disruption and release of intracellular protein from E. coli. Biochemical Engineering Journal, 35(2), 166–173.

    Article  CAS  Google Scholar 

  • Balasundaram, B., and Harrison, S. T. L. (2006a). Disruption of Brewers’ yeast by hydrodynamic cavitation: Process variables and their influence on selective release. Biotechnology and Bioengineering, 94(2), 303–311.

    Article  CAS  Google Scholar 

  • Balasundaram, B., and Harrison, S. T. L. (2006b). Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation. Biotechnology Progress, 22(3), 907–913.

    Article  CAS  Google Scholar 

  • Balasundaram, B., and Pandit, A. B. (2001a). Selective release of invertase by hydrodynamic cavitation. Biochemical Engineering Journal, 8, 251–256.

    Article  CAS  Google Scholar 

  • Balasundaram, B., and Pandit, A. B. (2001b). Significance of location of enzymes on their release during microbial cell disruption. Biotechnology and Bioengineering, 75, 607–614

    Article  CAS  Google Scholar 

  • Bitton G. (1994). Wastewater microbiology. New York, NY, Wiley.

    Google Scholar 

  • Chand, R., Bremner, D. H., Namkung, K. C., Collier, P. J., and Gogate, P. R. (2007). Water disinfection using a novel approach of ozone assisted liquid whistle reactor. Biochemical Engineering Journal, 35, 357–364.

    Article  CAS  Google Scholar 

  • Chatterjee, D., and Arakeri, V. H. (1997). Towards the concept of hydrodynamic cavitation control. Journal of Fluid Mechanics, 332, 377–394.

    CAS  Google Scholar 

  • Cheremissinoff, N. P., Cheremissinoff, P. N., and Trattner, R. B. (1981). Chemical and nonchemical disinfection. Ann Arbor, MI, Ann Arbor Science.

    Google Scholar 

  • Chisti, Y., and Moo-Young, M. (1986). Disruption of microbial cells for intracellular products. Enzyme and Microbial Technology, 8, 194–204.

    Article  CAS  Google Scholar 

  • Chivate, M. M., and Pandit, A. B. (1993). Effect of hydrodynamic and sonic cavitation on aqueous polymeric solutions. Industrial and Chemical Engineering, 35 (1–2), 52.

    CAS  Google Scholar 

  • Datar R., and Rosen, C.-G. (1990). Downstream process economics. In: Asenjo, J. A. (eds.), Separation processes in biotechnology, pp. 741–793. New York, NY, Marcel Dekker.

    Google Scholar 

  • Engler C. R. (1985). Disruption of microbial cells. In: Moo-Young, M. (ed.), Comprehensive biotechnology, Vol. 2, pp. 305–324. Oxford, Pergamon Press.

    Google Scholar 

  • Farkade, V. D., Harrison, S. T. L., and Pandit, A. B. (2005). Heat induced translocation of proteins and enzymes within the cells: An effective way to optimize the microbial cell disruption process. Biochemical Engineering Journal, 23, 247–257.

    Article  CAS  Google Scholar 

  • Farkade, V. D., Harrison, S. T. L., and Pandit, A. B. (2006). Improved cavitational cell disruption following pH pretreatment for the extraction of β-galactosidase from Kluveromyces lactis. Biochemical Engineering Journal, 31(1), 25–30.

    Article  CAS  Google Scholar 

  • Follows, M., Heterington, P. J., Dunhill, P., and Lilly, M. D. (1971). Release of enzymes from bakers’ yeast by disruption in an industrial homogenizer. Biotechnology and Bioengineering, 13(4), 549–560.

    Article  CAS  Google Scholar 

  • Geciova, J., Bury, D., and Jelen, P. (2002). Methods for disruption of microbial cells for potential use in the dairy industry: A review. International Dairy Journal, 12(6), 541–553.

    Article  CAS  Google Scholar 

  • Gogate, P. R., and Pandit, A. B. (2000). Engineering design methods for cavitation reactors II: Hydrodynamic cavitation reactors. AIChE Journal, 46(8), 1641–1649.

    Article  CAS  Google Scholar 

  • Gogate, P. R., and Pandit, A. B. (2001). Hydrodynamic cavitation reactors: A state of the art review. Reviews in Chemical Engineering, 17, 1–85.

    Article  CAS  Google Scholar 

  • Gogate, P. R., Shirgaonkar, I. Z., Sivakumar, M., Senthilkumar, P., Vichare, N. P., and Pandit, A. B. (2001). Cavitation reactors: Efficiency analysis using a model reaction. AIChE Journal, 47(11), 2326–2338.

    Article  Google Scholar 

  • Gopalkrishnan, J. (1997). Cell disruption and enzyme recovery. Masters Dissertation, University of Mumbai.

    Google Scholar 

  • Harris, G. D., Adams, V. D., Sorensen, D. L., and Dupont, R. R. (1987). The influence of photoreactivation and water quality on ultraviolet disinfection of secondary municipal wastewater. Journal of Water Pollution Control Federation, 59, 781.

    CAS  Google Scholar 

  • Harrison, S. T. L. (2002). Bacterial cell disruption: A key unit operation in the recovery of intracellular products. Biotechnology Advances, 9, 217–240.

    Article  Google Scholar 

  • Harrison, S. T. L., and Pandit, A. B. (1992). The disruption of microbial cells by hydrodynamic cavitation. 9th International Biotechnology Symposium, Washington, DC.

    Google Scholar 

  • Jyoti, K. K., and Pandit, A. B. (2001). Water disinfection by acoustic and hydrodynamic cavitation. Biochemical Engineering Journal, 7, 201–12.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., and Pandit, A. B. (2003). Hybrid cavitation methods for water disinfection. Biochemical Engineering Journal, 14(1), 9–17.

    Article  CAS  Google Scholar 

  • Jyoti, K. K., and Pandit, A. B. (2004). Ozone and cavitation for water disinfection. Biochemical Engineering Journal, 18(1), 9–19.

    Article  CAS  Google Scholar 

  • Kalumuck, K. M., and Chahine, G. L., (2000). The use of cavitating jets to oxidize organic compounds in water. Journal of Fluids Engineering, 122, 465–470.

    Article  CAS  Google Scholar 

  • Kanthale, P. M., Gogate, P. R., Wilhelm, A. M., and Pandit, A. B. (2005). Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach. Ultrasonics Sonochemistry, 12, 441–452.

    Article  CAS  Google Scholar 

  • Keshavarz, E., Bonnerjea, J., Hoare, M., and Dunhill, P. (1990). Disruption of a fungal organism, rhizopus nigricans, in a high-pressure homogenizer. Enzyme and Microbial Technology, 12 (7), 494–498.

    Article  CAS  Google Scholar 

  • Kozyuk, O. V. (1998). Method of obtaining a free disperse system in liquid and device for effecting the same. U. S. Patent, US 5810 052, 22 Sep 1998.

    Google Scholar 

  • Kozyuk, O. V. (1999a). Method and apparatus for producing ultra-thin emulsions and dispersions. U. S. Patent, US 5931771 A, 3 Aug 1999.

    Google Scholar 

  • Kozyuk, O. V. (1999b). Use of hydrodynamic cavitation for emulsifying and homogenizing processes. American Laboratory, 31, 6–8.

    Google Scholar 

  • Kumar, P. S., and Pandit, A. B. (1999). Modeling hydrodynamic cavitation. Chemical Engineering and Technology, 22, 1017–1027.

    Article  CAS  Google Scholar 

  • Luche, J. L. (1999). Synthetic organic sonochemistry. New York, NY, Plenum Press.

    Google Scholar 

  • Mason, T. J., and Lorimer, J. P. (1988). Sonochemistry: Theory, applications and uses of ultrasound in chemistry. New York, NY, Wiley.

    Google Scholar 

  • Mason, T. J., and Lorimer, J. P. (2002). Applied sonochemistry: The uses of power ultrasound in chemistry and processing. Weinheim, Wiley-VCH GmbH.

    Google Scholar 

  • Mason, T. J., Joyce, E., Phull, S. S., and Lorimer, J. P. (2003). Potential uses of ultrasound in the biological decontamination of water. Ultrasonics Sonochemistry, 10(6), 319–323.

    Article  CAS  Google Scholar 

  • Minear R. A., and Amy G. L. (1996). Disinfection by-products in water treatment. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Moholkar, V. S., and Pandit, A. B. (1997). Bubble Behavior in Hydrodynamic Cavitation: Effect of Turbulence. AIChE Journal, 43, 1641–1648.

    Article  CAS  Google Scholar 

  • Moholkar, V. S., and Pandit, A. B. (2001a). Modeling of hydrodynamic cavitation reactors: A unified approach. Chemical Engineering Science, 56, 6295–6302.

    Article  CAS  Google Scholar 

  • Moholkar, V. S., and Pandit, A. B. (2001b). Numerical investigations in the behaviour of one-dimensional bubbly flow in hydrodynamic cavitation. Chemical Engineering Science, 56, 1411–1418.

    Article  CAS  Google Scholar 

  • Moholkar, V. S., Senthilkumar, P., and Pandit, A. B. (1999). Hydrodynamic cavitation for sonochemical effects. Ultrasonics Sonochemistry, 6, 53–65.

    Article  CAS  Google Scholar 

  • Moser, W. R., Marshik-Geurts, B. J., Kingsley, J., Lemberger, M., Willette, R., Chan, A., Sunstrom, J. E., and Boye, A. J. (1995). The synthesis and characterization of solid state materials produced by high shear hydrodynamic cavitation. Journal of Materials Research, 10, 2322.

    Article  CAS  Google Scholar 

  • Moser, W. R., Sunstrom, J. E., and Marshik-Guerts, B. (1996). The synthesis of nanostructured pure-phase catalysts by hydrodynamic cavitation. In: Moser, W. R. (ed.), Advanced Catalysts and Nanostructured Materials, Academic Press: New York, pp. 285–306.

    Google Scholar 

  • Novella, I. S., Fargues, C., and Grevillot, G. (1994). Improvement of the extraction of penicillin acylase from Escherichia coli cells by a combined use of chemical methods. Biotechnology and Bioengineering, 44(3), 379–382.

    Article  CAS  Google Scholar 

  • Parker J. A., and Darby J. L. (1995). Particle-associated coliform in secondary effluents: Shielding from ultra-violet light disinfection. Water Environment Research, 67, 1065.

    Article  CAS  Google Scholar 

  • Phull, S. S., Newman, A. P., Lorimer, J. P., Pollet, B., and Mason, T. J. (1997). The development and evaluation of ultrasound in the biocidal treatment of water. Ultrasonics Sonochemistry, 4(2), 157–164.

    Article  CAS  Google Scholar 

  • Piyasena, P., Mohareb, E., and McKellar, R. C. (2003). Inactivation of microbes using ultrasound: A review. International Journal of Food Microbiology, 87(3), 207–216.

    Article  CAS  Google Scholar 

  • Pontius F. W. (1990). American waterworks association: Water quality and treatment. New York, NY, McGraw-Hill.

    Google Scholar 

  • Povey, M. J. W., and Mason, T. J. (1998). Ultrasound in food processing. London, Blackie Academic and Professional.

    Google Scholar 

  • Sampathkumar, K., and Moholkar, V. S. (2007). Conceptual design of a novel hydrodynamic cavitation reactor. Chemical Engineering Science, 62, 2698–2711.

    Article  Google Scholar 

  • Save, S. S., Pandit, A. B., and Joshi, J. B. (1994). Microbial cell disruption: Role of cavitation. Chemical Engineering Journal, 55, B67–B72.

    Google Scholar 

  • Save, S. S., Pandit, A. B., and Joshi, J. B. (1997). Use of hydrodynamic cavitation for large scale cell disruption. Chemical Engineering Research and Design, 75(C), 41–49.

    Google Scholar 

  • Senthilkumar, P., Sivakumar, M., and Pandit, A. B. (2000). Experimental quantification of chemical effects of hydrodynamic cavitation. Chemical Engineering Science, 55(9), 1633.

    Article  Google Scholar 

  • Shirgaonkar, I. Z., Lothe, R. R., and Pandit, A. B. (1998). Comments on the mechanism of microbial cell disruption in high pressure and high speed devices. Biotechnology Progress, 14(4), 657.

    Article  CAS  Google Scholar 

  • Simpson K. L., and Hayes K. P., (1998). Drinking water disinfection byproducts: An Australian perspective. Water Research, 32(5), 1522.

    Article  CAS  Google Scholar 

  • Sivakumar, M., and Pandit, A. B. (2002). Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique. Ultrasonics Sonochemistry, 9, 123–131.

    Article  CAS  Google Scholar 

  • Sunstrom, J. E., Moser, W. R., and Marshik-Guerts, B. (1996). General route to nanocrystalline oxides by hydrodynamic cavitation. Chemistry of Materials, 8(8), 2061.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1990). The chemical effects of ultrasound. Science, 247, 1439.

    Article  CAS  Google Scholar 

  • Suslick, K. S., Mdleleni, M. M., and Reis, J. T. (1997). Chemistry induced by hydrodynamic cavitation. Journal of the American Chemical Society, 119(39), 9303.

    Article  CAS  Google Scholar 

  • Tomita, Y. and Shima, A. (1986). Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. Journal of Fluid Mechanics, 169, 535.

    Article  CAS  Google Scholar 

  • Tullis, J. P., and Govindrajan, R. (1973). Cavitation and size scale effect for orifices. Journal of Hydraulics Division, HY13, 417.

    Google Scholar 

  • Umakoshi, H., Kuboi, R., Komasawa, I., Tsuchido, T., and Matsumura, Y. (1998). Heat-induced translocation of cytoplasmic β-galactosidase across inner membrane of Escherichia coli. Biotechnology Progress, 14(2), 210–217.

    Article  CAS  Google Scholar 

  • Vichare, N. P., Gogate, P. R., and Pandit, A. B. (2000). Optimization of hydrodynamic cavitation using a model reaction. Chemical Engineering Technology, 23, 683–690.

    Article  CAS  Google Scholar 

  • White G. C. (1992). The handbook of chlorination and alternative disinfectants. New York, NY, Van Nostrand.

    Google Scholar 

  • Yan, Y., and Thorpe, R. B. (1990). Flow regime transitions due to cavitation in flow through an orifice. International Journal of Multiphase flow, 16(6), 1023.

    Article  CAS  Google Scholar 

  • Yan, Y., Thorpe, R. B., and Pandit, A. B. (1988). Cavitation noise and its suppression by air in orifice flow. Proceedings of International Symposium Flow Induced Vibration and Noise, pp. 25–40, Chicago, ASME.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parag R. Gogate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gogate, P.R. (2011). Application of Hydrodynamic Cavitation for Food and Bioprocessing. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_6

Download citation

Publish with us

Policies and ethics