Skip to main content

The Thermodynamic and Kinetic Aspects of Power Ultrasound Processes

  • Chapter
  • First Online:
Ultrasound Technologies for Food and Bioprocessing

Part of the book series: Food Engineering Series ((FSES))

Abstract

Most high intensity or power ultrasound applications involve a special transmission mode of sound waves in a medium that is composed of consecutive compressions and rarefactions. Since the propagation of such longitudinal waves is normally associated with a liquid medium, the use of power ultrasound is often termed as sonication. When the negative pressure in the rarefaction phase surpasses the tensile stress of the liquid, the liquid will be torn apart and cavities will be formed (Leighton, 1994). The inception of cavitation and the subsequent mechanical and chemical effects rising from the cavitation activity enable interactions between the acoustic energy and food and biological systems being processed. Such interactions take place at microscopic levels as the average diameters of cavitation bubbles are at 150–170 μm, for bubbles generated in water by 20 kHz ultrasound transducers (Awad, 1996; Vago, 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akaike, H. (1973). Information theory and extension of the maximum likelihood principle. In: Petrov, B. N., and Cza’ki F. (eds.), Proceedings of the 2nd international symposium of information theory, pp. 267–281. Budapest, Hungary, Akademiai Kiado.

    Google Scholar 

  • Allison, D. G., D'Emanuele, A., Eginton, P., and Williams, A. R. (1996). The effect of ultrasound on Escherichia coli viability. Journal of Basic Microbiology, 36, 3–11.

    Article  CAS  Google Scholar 

  • Awad, S. B. (1996). Ultrasonic cavitations and precision cleaning. Precision Cleaning, November, 12.

    Google Scholar 

  • Baumann, A., Martin, S. E., and Feng, H. (2005). Power ultrasound treatment of Listeria monocytogenes in apple cider. Journal of Food Protection, 68, 2333–2340.

    Google Scholar 

  • Burgos, J., Ordonez, J. A., and Sala, F. (1972). Effect of ultrasonic waves on the heat resistance of bacillus cereus and bacillus licheniformis spores. Applied and Environmental Microbiology, 24, 497–498.

    CAS  Google Scholar 

  • Cabeza, M. C., Ordóñez, J. A., Cambero, I., De la Hoz, L., and García, M. L. (2004). Effect of thermoultrasonication on Salmonella enterica serovar enteritidis in distilled water and intact shell eggs. Journal of Food Protection, 67, 1886–1891.

    CAS  Google Scholar 

  • Cerf, O. (1997). Tailing survival curves of bacterial spores. Journal of Applied Bacteriology, 42, 19.

    Google Scholar 

  • Chamul, R. S., and Silva, J. L. (1999). High frequency ultrasound amplitude, column height and contact time on water disinfection. In: Barbosa-Canovas, G. V., and Lombardo, S. P. (eds.), Proceedings of the 6th conference of food engineering, AIChE, pp. 146–150. Dallas, TX.

    Google Scholar 

  • Chen, H., and Hoover, D. G. (2003). Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innovative Food Science and Emerging Technology, 4, 25–34.

    Article  Google Scholar 

  • Coroller, L., Leguerinel, I., Mettler, E., Savy, N., and Mafart, P. (2006). General model, based on two mixed Weibull distributions of bacterial resistance, for describing various shapes of inactivation curves. Applied and Environmental Microbiology, 72, 6493–6502.

    Article  CAS  Google Scholar 

  • D'Amico, D., Silk, T. M., Wu, J., and Guo, M. (2006). Inactivation of microorganisms in milk and apple cider treated with ultrasound. Journal of Food Protection, 69, 556–563.

    Google Scholar 

  • De Gennaro, L., Cavella, S., Romano, R., and Masi, P. (1999). The use of ultrasound in food technology I: Inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.

    Article  Google Scholar 

  • Earnshaw, R. G., Appleyard, J., and Hurst, R. M. (1995). Understanding physical inactivation processes: Combined preservation opportunities using heat, ultrasound and pressure. International Journal of Food Microbiology, 28, 197–219.

    Article  CAS  Google Scholar 

  • Gastelum, G. G., Avila-Sosa, R., López-Malo, A., and Palou, E. (2010). Listeria innocua multi-target inactivation by thermo-sonication and vanillin. Food Bioprocess Technology. doi:10.1007/s11947-010-0334-4.

    Google Scholar 

  • Gómez, N., García, D., Álvarez, I., Condón, S., and Raso, J. (2005). Modeling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. International Journal of Food Microbiology, 103, 199–206.

    Article  Google Scholar 

  • Guerrero, S., López-Malo, A., and Alzamora, S. M. (2001). Effect of ultrasound on the survival of Saccharomyces cerevisiae: Influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2, 31–39.

    Article  Google Scholar 

  • Guerrero, S., Tognon, M., and Alzamora, S. M. (2005). Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control, 16, 131–139.

    Article  CAS  Google Scholar 

  • Harvey, E. N., and Loomis, A. L. (1929). The destruction of luminous bacteria by high frequency sound waves. Journal of Bacteriology, 17, 373–376.

    CAS  Google Scholar 

  • Heinz, V., and Knorr, D. (2002). Effects of high pressure on spores. In: Hendrickx, M. E. G., and Knorr, D. (eds.), Ultra high pressure treatments of foods, pp. 77–113. New York, NY, Springer.

    Chapter  Google Scholar 

  • Heinz, V., and Knorr, D. (2005). High-pressure assisted heating as a method for sterilizing foods. In: Barbosa-Canovas, G. V. (eds.), Novel Food processing technologies, pp. 207–231. Boca Raton, FL, CRC Press.

    Google Scholar 

  • Heldman, D. R., and Newsome, R. L. (2003). Kinetic models for microbial survival during processing. Food Technology, 57, 40–46, 100.

    Google Scholar 

  • Heremans, K. (2002). The effects of high pressure on biomaterials. In: Hendrickx, M. E. G., and Knorr, D. (eds.), Ultra high pressure treatments of foods, pp. 23–51. New York, NY, Springer.

    Chapter  Google Scholar 

  • Jacobs, S. E., and Thornley, M. J. (1954). The lethal action of ultrasonic waves on bacteria suspended in milk and other liquids. Journal of Applied Bacteriology, 17, 38–56.

    Google Scholar 

  • Kinsloe, H., Ackerman, E., and Reid, J. J. (1954). Exposure of microorganisms to measured sound fields. Journal of Bacteriology, 68, 373–380.

    Article  CAS  Google Scholar 

  • Klotz, B., Pyle, D. L., and Mackey, B. M. (2007). New mathematical modeling approach for predicting microbial inactivation by high hydrostatic pressure. Applied and Environmental Microbiology, 73, 2468–2478.

    Article  CAS  Google Scholar 

  • Koseki, S., and Yamamoto, K. (2007). A novel approach to predicting microbial inactivation kinetics during high pressure processing. International Journal of Food Microbiology, 116, 275–282.

    Article  CAS  Google Scholar 

  • Lee, H., Zhou, B., Feng, H., and Martin, S. E. (2009a). Effect of pH on inactivation of Escherichia coli K12 by sonication, manosonication, thermosonication, and manothermosonication. Journal of Food Science, 74, E191–E198.

    Article  CAS  Google Scholar 

  • Lee, H., Zhou, B., Liang, W., Feng, H., and Martin, S.E. (2009b). Inactivation of Escherichia coli cells with sonication, manosonication, thermosonication, and manothermosonication: Microbial responses and kinetics modeling. Journal of Food Engineering, 93, 354–364.

    Article  Google Scholar 

  • Lee, J. W., Feng, H., and Kushad, M. M. (2005). Effect of manothermosonication (MTS) on quality of orange juice. In Proceedings of AIChE 2005 Annual Meeting, Cincinnati, OH.

    Google Scholar 

  • Leighton, T. G. (1994). The acoustic bubbles. London, UK, Academic.

    Google Scholar 

  • Linton, R. H., Carter, W. H., Pierson, M. D., and Hackney, C. R. (1995). Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. Journal of Food Protection, 58, 946–954.

    Google Scholar 

  • López, P., and Burgos, J. (1995a). Lipoxygenase inactivation by manothermosonication: effects of sonication physical parameters, Ph, Kcl, sugars, glycerol, and enzyme concentration. Journal of Agricultural and Food Chemistry, 43, 620–625.

    Article  Google Scholar 

  • López, P., and Burgos, J. (1995b). Peroxidase stability and reactivation after heat-treatment and manothermosonication. Journal of Food Science, 60, 451–455.

    Article  Google Scholar 

  • López, P., Vercet, A., Sánchez, A. C., and Burgos, J. (1998). Inactivation of tomato pectic enzymes by manothermosonication. Zeitschrift für Lebensmittel-Untersuchung und -Forschung, 207, 249–252.

    Article  Google Scholar 

  • López-Malo, A., and Palou, E. (2005). Zygosaccharomyces bailii Inactivation Kinetics During Thermo-Sonication Treatments at Selected Water Activities. 2nd Mercosur Congress on Chemical Engineering, 2005.

    Google Scholar 

  • López-Malo, A., Guerrero, S., and Alzamora, S. M. (1999). Saccharomyces cerevisiae thermal inactivation combined with ultrasound. Journal of Food Protection, 62, 1215–1217.

    Google Scholar 

  • López-Malo, A., Palou, E., Jiménez-Fernández, M., Alzamora, S. M., and Guerrero, S. (2005). Multifactorial fungal inactivation combining thermosonication and antimicrobials. Journal of Food Engineering, 67, 87–93.

    Article  Google Scholar 

  • Mafart, P., Couvert, O., Gaillard, S., and Leguerinel, I. (2002). On calculating sterility in thermal preservation methods: Application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72, 107–113.

    Article  CAS  Google Scholar 

  • Nahle, N. (2009). A thermodynamic description of life and death in biosystems. Journal of Human Thermodynamics, 5, 7–14.

    Google Scholar 

  • Ordoñez, J. A., Aguilera, M. A., Garcia, M. L., and Sanz, B. (1987). Effect of combined ultrasonic and heat treatment (thermoultrasonication) on the survival of a strain of Staphylococcus aureus. Journal of Dairy Research, 54, 61–67.

    Article  Google Scholar 

  • Pagán, R., Mañas, P., Álvarez, I., and Condón, S. (1999). Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology, 16, 139–148.

    Article  Google Scholar 

  • Patila, S., Bourke, P., Kellya, B., Fríasa L. M., and Cullena, P. J. (2009). The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innovative Food Science and Emerging Technologies, 10, 486–490.

    Article  Google Scholar 

  • Peleg, M., and Cole, M. B. (1998). Reinterpretation of microbial survival curves. Critical Reviews in Food Science and Nutrition, 38, 353–380.

    Article  CAS  Google Scholar 

  • Raso, J., Álvarez, I., Condón, S., and Trepat, F. J. S. (2000). Prediction inactivation of Salmonella senftenberg by pulsed electric fields. Innovative Food Science and Emerging Technologies, 1, 21–29.

    Article  Google Scholar 

  • Raso, J., Pagán, R., Condón, S., and Sala, F. J. (1998a). Influence of temperature and pressure on the lethality of ultrasound. Applied and Environmental Microbiology, 64, 465–471.

    CAS  Google Scholar 

  • Raso, J., Palop, A., and Condón, S. (1998b). Inactivation of Bacillus subtilis spores by combining ultrasound waves under pressure and mild heat treatment. Journal of Applied Microbiology, 85, 849–854.

    Article  CAS  Google Scholar 

  • Raviyan, P., Zhang, Z., and Feng, H. (2005). Ultrasonication for tomato pectinmethylesterase inactivation: Effect of cavitation intensity and temperature on inactivation, Journal of Food Engineering, 70, 189–196.

    Article  Google Scholar 

  • Rodgers, S. L., and Ryser, E. T. (2004). Reduction of microbial pathogens during apple cider production using sodium hypochlorite, copper ion, and sonication. Journal of Food Protection, 67, 766–771.

    CAS  Google Scholar 

  • Rodríguez-Calleja, J. M., Cebrian, G., Condón, S., and Mañas, P. (2006). Variation in resistance of natural isolates of Staphylococcus aureus to heat, pulsed electric field and ultrasound under pressure. Journal of Applied Microbiology, 100, 1054–1062.

    Article  Google Scholar 

  • Sala, F. J., Burgos, J., Condón, S., López, P., and Raso, J. (1999). Effect of heat and ultrasound on microorganisms and enzymes. In: Gould G. W. (ed.), New methods of food preservation, 2nd edn, pp. 176–204. Gaithersburg, Aspen.

    Google Scholar 

  • Singh, D. V. (1998). Thermodynamics and biology. Pure and Applied Chemistry, 70, 579–582.

    Article  CAS  Google Scholar 

  • Stanley, K. D., Golden, D. A., Williams, R. C., and Weiss, J. (2004). Inactivation of Escherichia coli O157:H7 by high-intensity ultrasonication in the presence of salts. Foodborne Pathogens Disease, 1, 267–280.

    Article  Google Scholar 

  • Tiwaria, B. K., O'Donnell, C. P., Muthukumarappana, K., and Cullen, P. J. (2009). Ascorbic acid degradation kinetics of sonicated orange juice during storage and comparison with thermally pasteurised juice. LWT – Food Science and Technology, 42, 700–704.

    Article  Google Scholar 

  • Ugarte-Romero, E., Feng, H., and Martin, S. E. (2007). Inactivation of Shigella boydii 18 IDPH and Listeria monocytogenes Scott A with power ultrasound at different acoustic energy densities and temperatures, Journal of Food Science, 72, 103–107.

    Article  Google Scholar 

  • Ugarte-Romero, E., Feng, H., Martin, S. E., Cadwallader, K. R., and Robinson, S. J. (2006). Inactivation of Escherichia coli with power ultrasound in apple cider. Journal of Food Science, 71, E102–E108.

    Article  CAS  Google Scholar 

  • U.S. Food and Drug Administration. (2001). Hazard analysis and critical control (HACCP). Procedures for the safe and sanitary processing and importing of juice. Federal Register, 66, 6137–6202.

    Google Scholar 

  • Vago, R. E. (1992). An ultrasonic cleaner's prime mover. Finishing, March, http://findarticles.com/p/articles/mi_hb4307/is_n3_v16/ai_n28614608/. Accessed July 7, 2010.

  • von Stockar, U., and Liu, J. S., (1999). Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth. Biochimica et Biophysica Acta, 1412, 191–211.

    Article  Google Scholar 

  • von Stockar, U., Maskow, T., Liu, J., Marison, I. M., and Patino, R. (2006). Thermodynamics of microbial growth and metabolism; An analysis of the current situation. Journal of Biotechnology, 121, 517–533.

    Article  Google Scholar 

  • Wang, J. Hu, X., and Wang, Z. (2010). Kinetics models for the inactivation of Alicyclobacillus acidiphilus DSM14558(T) and Alicyclobacillus acidoterrestris DSM 3922(T) in apple juice by ultrasound. International journal of food microbiology, 139, 177–181.

    Article  CAS  Google Scholar 

  • Zenker, M., Heinz, V., and Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66, 1642–1649.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Feng, H. (2011). The Thermodynamic and Kinetic Aspects of Power Ultrasound Processes. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_4

Download citation

Publish with us

Policies and ethics