Skip to main content

Ultrasound Applications in Food Processing

  • Chapter
  • First Online:
Ultrasound Technologies for Food and Bioprocessing

Abstract

Food scientists today are focused on the development of not only microbiologically safe products with a long storage life, but, at the same time, products that have fresh-like characteristics and a high quality in taste, flavor, and texture. This focus is based on the needs of the consumer, which is one of the main reasons for constant research in the so-called area of emerging technologies. Traditionally, thermal treatments have been used to produce safe food products. Pasteurization of juice, milk, beer, and wine is a common process in which the final product has a storage life of some weeks (generally under refrigeration). However, vitamins, taste, color, and other sensorial characteristics are decreased with this treatment. High temperature is responsible for these effects and can be observed in the loss of nutritional components and changes in flavor, taste, and texture, often creating the need for additives to improve the product.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albu, S., Joyce, E., Paniwnyk, L., Lorimer, J. P., and Mason, T. J. (2004). Potential for the use of ultrasound in the extraction of antioxidants from Rosmarinus officinalis for the food and pharmaceutical industry. Ultrasonics Sonochemistry, 11, 261–265.

    Article  CAS  Google Scholar 

  • Aleixo, P. C., Santos Junior, D., Tomazelli, A. C., Rufini, I. A., Berndt, H., and Krug, F. J. (2004). Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation. Analytica Chimica Acta, 512, 329–337.

    Article  CAS  Google Scholar 

  • American Heritage Stedman’s Medical Dictionary. (2002). Boston, MA. Houghton Mifflin.

    Google Scholar 

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., and Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155–160.

    Article  CAS  Google Scholar 

  • Bamberger, J. A., and Greenwood, M. S. (2004). Non-invasive characterization of fluid foodstuffs based on ultrasonic measurements. Food Research International, 37, 621–625.

    Article  CAS  Google Scholar 

  • Behrend, O., and Schubert, H. (2001). Influence of hydrostatic pressure and gas content on continuous ultrasound emulsification. Ultrasonics Chemistry, 8(3), 271–276.

    Article  CAS  Google Scholar 

  • Benedito, J., Carcel, J. A., Gonzalez, R., and Mulet, A. (2002). Application of low intensity ultrasonics to cheese manufacturing processes. Ultrasonics, 40, 19–23.

    Article  CAS  Google Scholar 

  • Cao, S., Hu, Z., Pang, B., Wang, H., Xie, H., and Wu, F. (2010). Effect of ultrasound treatment on fruit decay and quality maintenance in strawberry after harvest. Food Control. 21(4):529–532, doi:10.1016/j.foodcont.(2009).08.002.

    Google Scholar 

  • Cárcel, J. A., Benedito, J., Rosselló, C., and Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472–479.

    Article  Google Scholar 

  • Chemat, F., and Hoarau, N. (2004). Hazard analysis and critical control point (HACCP) for an ultrasound food processing operation. Ultrasonics Sonochemistry, 11, 257–260.

    Article  CAS  Google Scholar 

  • Chemat, F., Grondin, I., Cheong Sing, S., and Smadja, J. (2004). Deterioration of edible oils during food processing by ultrasound. Ultrasonics Chemistry, 11, 13–15.

    Article  CAS  Google Scholar 

  • Coupland, J. N. (2004). Low intensity ultrasound. Food Research International, 37, 537–543.

    Article  Google Scholar 

  • Coupland, J. N., and McClements, D. J. (2001). Droplet size determination in food emulsions: comparison of ultrasonic and light scattering methods. Journal of Food Engineering, 50, 117–120.

    Article  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., and Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering, 72(1), 8–15.

    Article  CAS  Google Scholar 

  • De Gennaro, L., Cavella, S., Romano, R., and Masi, P. (1999). The use of ultrasound in food technology I: Inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.

    Article  Google Scholar 

  • Duckhouse, H., Mason, T. J., Phull, S. S., and Lorimer, J. P. (2004). The effect of sonication on microbial disinfection using hypochlorite. Ultrasonics Sonochemistry, 11(3–4), 173–176.

    Article  CAS  Google Scholar 

  • Earnshaw, R. G., Appleyard, J., and Hurst, R. M. (1995). Understanding physical inactivation processes: combined preservation opportunities using heat, ultrasound and pressure. International Journal of Applied Microbiology, 28, 197–219.

    Article  CAS  Google Scholar 

  • Elmehdi, H. M., Page, J. H., and Scanlon, M. G. (2003). Using ultrasound to investigate the cellular structure of bread crumb. Journal of Cereal Science, 38, 33–42.

    Article  Google Scholar 

  • Feril, L. B., Jr., and Kondo, T. (2005). Major factors involved in the inhibition of ultrasound-induced free radical production and cell killing by pre-sonication incubation or by high cell density. Ultrasonics Sonochemistry, 12(5), 353–357.

    Article  CAS  Google Scholar 

  • Fernandes, F. A. N., and Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82, 261–267.

    Article  Google Scholar 

  • Furuta, M., Yamaguchi, M., Tsukamoto, T., Yim, B., Stavarache, C. E., Hasiba, K., and Maeda, Y. (2004). Inactivation of Escherichia coli by ultrasonic irradiation. Ultrasonics Sonochemistry, 11(2), 57–60.

    Article  CAS  Google Scholar 

  • Gallego-Juárez, J. A., Elvira-Segura, L., and Rodríguez-Corral, G. (2003). A power ultrasonic technology for deliquoring. Ultrasonics, 41, 255–259.

    Article  Google Scholar 

  • Gan, T. H., Hutchins, D. A., and Billson, D. R. (2002). Preliminary studies of a novel air-coupled ultrasonic inspection system for food containers. Journal of Food Engineering, 53, 315–323.

    Google Scholar 

  • García, M. L., Burgos, J., Sanz, B., and Ordoñez, J. A. (1989). Effect of heat and ultrasonic waves on the survival of two strains of Bacillus subtilis. Journal of Applied Bacteriology, 67(6), 619–628.

    Google Scholar 

  • Gestrelius, H., Hertz, T. G., Nuamu, M., Persson, H. W., and Lindström, K. (1993). A Non-destructive ultrasound method for microbial quality control of aseptically packaged milk. Lebensm.Wiss.u.-Tecnology, 26, 334–339.

    Google Scholar 

  • Guerrero, S., López-Malo, A., and Alzamora, S. M. (2001). Effect of ultrasound on the survival of Saccharomyces cerevisiae: Influence of temperature, pH and amplitude. Innovative Food Science and Emerging Technologies, 2, 31–39.

    Article  Google Scholar 

  • Guerrero, S., Tognon, M., and Alzamora, S. M. (2005). Response of Saccharomyces cerevisiae to the combined action of ultrasound and low weight chitosan. Food Control, 16, 131–139.

    Article  CAS  Google Scholar 

  • Hæggström, E., and Luukkala, M. (2000). Ultrasonic monitoring of beef temperature during roasting. Lebensmittel-Wissenschaft und-Technologie, 33(7), 465–470.

    Article  Google Scholar 

  • Hæggström, E., and Luukkala, M. (2001). Ultrasound detection and identification of foreign bodies in food products. Food Control, 12, 37–45.

    Article  Google Scholar 

  • Hecht, E. (1996). Physics: Calculus, pp. 445–450, 489–521. Pacific Grove, CA, Brooks/Cole.

    Google Scholar 

  • Jambrak, A. R., Mason, T. J., Lelas, V., Herceg, Z., and Herceg, I. L. (2008). Effect of ultrasound treatment on solubility and foaming properties of whey protein suspensions. Journal of Food Engineering, 86, 281–287.

    Article  CAS  Google Scholar 

  • Jambrak, A. R., Mason, T. J., Paniwnyk, L., and Lelas, V. (2007). Accelerated drying of mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88–97.

    Article  Google Scholar 

  • Jiménez-Fernández, M., Palou, E., and López-Malo, A. (2001). Aspergillus flavus inactivation by thermoultrasonication treatments. In: Welti-Chanes, J., Barbosa-Cánovas, G. V., and Aguilera, J. M. (eds.), Proceedings of the Eight International Congress on Engineering and Food, ICEF 8, Vol. II, pp. 1454–1458. Boca Ratón, FL, Technomic.

    Google Scholar 

  • Joyce, E., Phull, S. S., Lorimer, J. P., and Mason, T. J. (2003). The development and evaluation of ultrasound for the treatment of bacterial suspensions. A study of frequency, power and sonication time on cultured Bacillus species. Ultrasonics Sonochemistry, 10, 315–318.

    Article  CAS  Google Scholar 

  • Kardos, N., and Luche, J. L. (2001). Sonochemistry of carbohydrate compounds. Carbohydrate Research, 332, 115–131.

    Article  CAS  Google Scholar 

  • Karki, B., Lamsal, B. P., Jung, S., van Leeuwen, J., Pometto A. L., III, Grewell, D., and Khanal, S. K. (2010). Enhancing protein and sugar release from defatted soy flakes using ultrasound technology. Journal of Food Engineering, 96, 270–278.

    Article  CAS  Google Scholar 

  • Kennedy, J. E., Wu, F., ter Harr, G. R., Gleeson, F. V., Phillips, R. R., Middleton, M. R., and Cranston, D. (2004). High-intensity focused ultrasound for the treatment of liver tumors. Ultrasonics, 42, 931–935.

    Article  CAS  Google Scholar 

  • Knorr, D., Zenker, M., Heinz, V., and Lee, D. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science and Technology, 15, 261–266.

    Article  CAS  Google Scholar 

  • Krefting, D., Mettin, R., and Lauterborn, W. (2004). High-speed observation of acoustic cavitation erosion in multibubble systems. Ultrasonics Sonochemistry, 11, 119–123.

    Article  CAS  Google Scholar 

  • Krešić, G., Lelas, V., Režek Jambrak, A., Herceg, Z., and Rimac Brnčić, S. (2008). Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins. Journal of Food Engineering, 87, 64–73.

    Google Scholar 

  • Lee, D. U., Heinz, V., and Knorr, D. (2003). Effects of combination treatments of nisin and high intensity ultrasound with pressure on the microbial inactivation in liquid whole egg. Innovative Food Science and Engineering Technologies, 4, 387–393.

    Article  CAS  Google Scholar 

  • Li, H., Pordesimo, L., and Weiss, J. (2004). High intensity ultrasound-assisted extraction of oil from soybeans. Food Research International, 37, 731–738.

    Article  CAS  Google Scholar 

  • Mann, T., and Krull, U. J. (2004). The application of ultrasound as a rapid method to provide DNA fragments suitable for detection by DNA biosensors. Biosensors and Bioelectronics, 20(5), 945–955.

    Article  CAS  Google Scholar 

  • Mason, T. J. (1996). Power ultrasound in food processing – the way forward. In: Povey, M. J. W. and Mason, T. J. (eds.), Ultrasound in Food Processing, pp. 105–126. London, Blackie Academic and Professional.

    Google Scholar 

  • Mason, T. J. (2003). Sonochemistry and sonoprocessing: the link, the trends and (probably) the future. Ultrasonics Sonochemistry, 10(4–5), 175–179.

    Article  CAS  Google Scholar 

  • Mason, T. J., Paniwnyk, L., and Lorimer, J. P. (1996). The uses of ultrasound in food technology. Ultrasonics Sonochemistry, 3, S253–S260.

    Article  CAS  Google Scholar 

  • McClements, J. D. (1995). Advances in the application of ultrasound in food analysis and processing. Trends in Food Science and Technology, 6, 293–299.

    Article  CAS  Google Scholar 

  • Miles, C. A., Morley, M. J., and Rendell, M. (1999). High power ultrasonic thawing of frozen foods. Journal of Food Engineering, 39, 151–159.

    Article  Google Scholar 

  • Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., and Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81, 364–373.

    Article  Google Scholar 

  • Neis, U., and Blume, T. (2003). Ultrasonic disinfection of wastewater effluents for high-quality reuse. Water Science and Technology: Water Supply, 3(4), 261–267.

    CAS  Google Scholar 

  • Oulahal-Lagsir, N., Martial-Gros, A., Bonneau, M., and Blum, L. J. (2000). Ultrasonic methodology coupled to ATP bioluminescence for the non-invasive detection of fouling in food processing equipment – validation and application to a dairy factory. Journal of Applied Microbiology, 89, 433–441.

    Article  CAS  Google Scholar 

  • Pagán, R., Mañas, P., Alvarez, I., and Condón, S. (1999). Resistance of Listeria monocytogenes to ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiology, 16, 139–148.

    Article  Google Scholar 

  • Patil, S., Bourke, P., Kelly, B., Frías, J. M., and Cullen, P. J. (2009). The effects of acid adaptation on Escherichia coli inactivation using power ultrasound. Innovative Food Science and Emerging Technologies, 10, 486–490.

    Article  CAS  Google Scholar 

  • Patrick, M., Blindt, R., and Janssen, J. (2004). The effect of ultrasonic intensity on the crystal structure of palm oil. Ultrasonics Sonochemistry, 11, 251–258.

    Article  CAS  Google Scholar 

  • Piyasena, P., Mohareb, E., and McKellar, R. C. (2003). Inactivation of microbes using ultrasound: a review. International Journal of Food Microbiology, 87, 207–216.

    Article  CAS  Google Scholar 

  • Povey, M., and Mason, T. (1998). Ultrasound in food processing. London, Blackie Academic and Professional.

    Google Scholar 

  • Raso, J., and Barbosa-Cánovas, G. V. (2003). Nonthermal preservation of foods using combined processing techniques. Critical Reviews in Food Science and Nutrition, 43(3), 265–285.

    Article  Google Scholar 

  • Raso, J., Pagán, R., Condón, S., and Sala, F. J. (1998a). Influence of treatment and pressure on the lethality of ultrasound. Applied and Environmental Microbiology, 64(2), 465–471.

    CAS  Google Scholar 

  • Raso, J., Palop, A., Pagán, J., and Condón, S. (1998b). Inactivation of Bacillus subtilis spores by combining ultrasonic waves under pressure and mild heat treatments. Journal of Applied Microbiology, 85, 849–854.

    Article  CAS  Google Scholar 

  • Riera-Franco de Sarabia, E., Gallego-Juárez, J. A., Rodríguez-Corral, G., Elvira-Segura, L., and González-Gómez, I. (2000). Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics, 38, 642–646.

    Article  Google Scholar 

  • Rodríguez, J. J., Barbosa-Cánovas, G. V., Gutiérrez-López, G. F., Dorantes-Álvarez, L., Yeom, H. W., and Zhang, Q. H. (2003). An update on some key alterative food processing technologies: Microwave, pulsed electric field, high hydrostatic pressure, irradiation and ultrasound. In: Gutiérrez-López, G. F., and Barbosa-Cánovas, G. V. (eds.), Food science and food biotechnology, pp. 279–312. Boca Ratón, FL, CRC Press.

    Google Scholar 

  • Ruis-Jiménez, J., Priego-Capote, F., and Luque de Castro, M. D. (2004). Identification and quantification of trans fatty acids in bakery products by gas chromatography-mass spectrometry after dynamic ultrasound-assisted extraction. Journal of Chromatography A, 1045, 203–210.

    Article  Google Scholar 

  • Saggin, R., and Coupland, J. N. (2001). Non-contact ultrasonic measurements in food materials. Food Research International, 34, 865–870.

    Article  Google Scholar 

  • Scherba, G., Weigel, R. M., and O’Brien, W. D. (1991). Quantitative assessment of the germicidal efficacy of ultrasonic energy. Applied and Environmental Microbiology, 57(7), 2079–2084.

    CAS  Google Scholar 

  • Schläfer, O., Onyeche, T., Bormann, H., Schröder, C., and Sievers, M. (2002). Ultrasound stimulation of micro-organisms for enhanced biodegradation. Ultrasonics, 40, 25–29.

    Article  Google Scholar 

  • Schöck, T., and Becker, T. (2010). Sensory array for the combined analysis of water-sugar-ethanol mixtures in yeast fermentations by ultrasound. Food Control. 21(4):362–369 doi:10.1016/j.foodcont.2009.06.017.

    Google Scholar 

  • Sigfusson, H., Ziegler, G. R., and Coupland, J. N. (2004). Ultrasonic monitoring of food freezing. Journal of Food Engineering, 62, 263–269.

    Article  Google Scholar 

  • Sun, D. W., and Li, B. (2003). Microstructural change of potato tissues frozen by ultrasound-assisted immersion freezing. Journal of Food Engineering, 57, 337–345.

    Article  Google Scholar 

  • Tian, Z. M., Wan, M. X., Wang, S. P., and Kang, J. Q. (2004). Effects of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry, 11, 399–404.

    CAS  Google Scholar 

  • Ting, C. H., Kuo, F. J., Lien, C. C., and Sheng, C. T. (2009). Use of ultrasound for characterizing the gelation process in heat induced CaSO4·2H2O tofu curd. Journal of Food Engineering, 93, 101–107.

    Article  CAS  Google Scholar 

  • Tsukamoto, I., Constantinoiu, E., Furuta, M., Nishimura, R., and Maeda, Y. (2004a). Inactivation of Saccharomyces cerevisiae by ultrasonic irradiation. Ultrasonics Sonochemistry, 11, 61–65.

    Article  CAS  Google Scholar 

  • Tsukamoto, I., Constantinoiu, E., Furuta, M., Nishimura, R., and Maeda, Y. (2004b). Inactivation effect of sonication and chlorination on Saccharomyces cerevisiae. Calorimetric analysis. Ultrasonics Sonochemistry, 11, 167–172.

    Article  CAS  Google Scholar 

  • Utsunomiya, Y., and Kosaka, Y. (1979). Application of supersonic waves to foods. Journal of the faculty of Applied Biological Science, Hiroshima University, 18(2), 225–231.

    Google Scholar 

  • Valdramidis, V. P., Cullen, P. J., Tiwari, B. K., and O’Donnell, C. P. (2010). Quantitative modeling approaches for ascorbic acid degradation and non-enzymatic browning of orange juice during ultrasound processing. Journal of Food Engineering, 96, 449–454.

    Article  CAS  Google Scholar 

  • Valero, M., Recrosio, N., Saura, D., Muñoz, N., Martí, N., and Lizama, V. (2007). Effects of ultrasonic treatments in orange juice processing. Journal of Food Engineering, 80, 509–516.

    Article  Google Scholar 

  • Vercet, A., Sánchez, C., Burgos, J., Montañés, L., and Lopez Buesa, P. (2002). The effects of manothermosonication on tomato pectin enzymes and tomato paste rheological properties. Journal of Food Engineering, 53, 273–278.

    Article  Google Scholar 

  • Vercet, A., Burgos, J., Crelier, S., and Lopez-Buesa, P. (2001). Inactivation of proteases and lipases by ultrasound. Innovative Food Science and Emerging Technologies, 2, 139–150.

    Article  CAS  Google Scholar 

  • Vilkhu, K., Mawson, R., Simons, L., and Bates, D. (2008). Applications and opportunities for ultrasound assisted extraction in the food industry – A review. Innovative Food Science and Emerging Technologies, 9, 161–169.

    Article  CAS  Google Scholar 

  • Wrigley, D. M., and Llorca, H. G. (1992). Decrease of Salmonella typhimurium in skim milk and egg by heat and ultrasonic wave treatment. Journal of Food Protection, 55(9), 678–680.

    Google Scholar 

  • Wu, H., Hulbert, G. J., and Mount, J. R. (2001). Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innovative Food Science and Emerging Technologies, 1, 211–218.

    Article  Google Scholar 

  • Zenker, M., Heinz, V., and Knorr, D. (2003). Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. Journal of Food Protection, 66(9), 1642–1649.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo V. Barbosa-Cánovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bermúdez-Aguirre, D., Mobbs, T., Barbosa-Cánovas, G.V. (2011). Ultrasound Applications in Food Processing. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_3

Download citation

Publish with us

Policies and ethics