Advertisement

Ultrasonic Membrane Processing

Chapter
Part of the Food Engineering Series book series (FSES)

Abstract

A membrane is a sermipermeable material that permits the passage of some molecules while retaining others. Ultrasound can enhance membrane operation through the asymmetric collapse of cavitating bubbles and through the turbulence associated with acoustic streaming. The added turbulence can lead to a looser, more porous fouling cake layer and may agglomerate fine particles, reducing pore blockage and cake compaction.These effects are dependent upon the ultrasonic intensity, the operating pressure, crossflow velocity and solids concentration.Membrane cleaning can also be enhanced by the use of ultrasound, but this application may not be economic when used in isolation. One of the greatest challenges facing the technology is the generation of a uniform acoustic field across the entire membrane surface in a full-scale module.

Keywords

Concentration Polarization Cavitation Bubble Ultrasonic Power Acoustic Streaming Retentate Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahner, N., Gottschlich, D., Narang, S., Roberts, D., Sharma, S., and Ventura, S. (1993). Piezoelectrically assisted ultrafiltration. Separation Science and Technology, 28(1–3), 895–908.CrossRefGoogle Scholar
  2. Akoum, O., Ding, L. H., Frappart, M., and Jaffrin, M. Y. (2004). COD reduction in nanofiltration of dairy process water using a vibratory dynamic filtration system. Proceedings – World Filtration Congress, 9th, New Orleans, LA, April 18–24, 2004, pp. 1733–1741.Google Scholar
  3. Akoum, O., Jaffrin, M. Y., and Ding, L. (2003). Skim milk ultrafiltration using a rotating disk and VSEP vibrating system. Recents Progres en Genie des Procedes 90 (9e Congres de la SFGP, 2003), 16–23.Google Scholar
  4. Akoum, O., Jaffrin, M. Y., and Ding, L.-H. (2005). Concentration of total milk proteins by high shear ultrafiltration in a vibrating membrane module. Journal of Membrane Science, 247(1–2), 211–220.CrossRefGoogle Scholar
  5. Babu, B. R., Rastogi, N. K., and Raghavarao, K. (2006). Mass transfer in osmotic membrane distillation of phycocyanin colorant and sweet-lime juice. Journal of Membrane Science, 272(1–2), 58–69.CrossRefGoogle Scholar
  6. Bayevsky, M. (2004). Systems and methods for ultrasonic cleaning of cross-flow membrane filters. US Patent No. 2004016699.Google Scholar
  7. Bjorno, I., and Bjorno, L. (2001). An approach to ultrasound cleaning of wine filtering plants. 17th International Congress on Acoustics, Rome.Google Scholar
  8. Bouzerar, R., Paullier, P., and Jaffrin, M. Y. (2003). Concentration of mineral suspensions and industrial effluents using a rotating disk dynamic filtration module. Desalination, 158(1–3), 79–85.CrossRefGoogle Scholar
  9. Bowen, W. R., and Sabuni, H. A. M. (1992). Pulsed electrokinetic cleaning of cellulose nitrate microfiltration membranes. Industrial and Engineering Chemistry Research, 31(2), 515–523.CrossRefGoogle Scholar
  10. Cassano, A., Drioli, E., Galaverna, G., Marchelli, R., Di Silvestro, G., and Cagnasso, P. (2003). Clarification and concentration of citrus and carrot juices by integrated membrane processes. Journal of Food Engineering, 57(2), 153–163.CrossRefGoogle Scholar
  11. Chai, X., Kobayashi, T., and Fujii, N. (1998). Ultrasound effect on cross-flow filtration of polyacrylonitrile ultrafiltration membranes. Journal of Membrane Science, 148(1), 129–135.CrossRefGoogle Scholar
  12. Chai, X., Kobayashi, T., and Fujii, N. (1999). Ultrasound-associated cleaning of polymeric membranes for water treatment. Separation and Purification Technology, 15(2), 139–146.CrossRefGoogle Scholar
  13. Charcosset, C. (1998). Purification of proteins by membrane chromatography. Journal of Chemical Technology and Biotechnology, 71(2), 95–110.CrossRefGoogle Scholar
  14. Chen, D., Weavers, L. K., and Walker, H. W. (2006a). Ultrasonic control of ceramic membrane fouling by particles: Effect of ultrasonic factors. Ultrasonics Sonochemistry, 13(5), 379–387.CrossRefGoogle Scholar
  15. Chen, D., Weavers, L. K., and Walker, H. W. (2006b). Ultrasonic control of ceramic membrane fouling: Effect of particle characteristics. Water Research, 40(4), 840–850.CrossRefGoogle Scholar
  16. Chen, D., Weavers, L. K., Walker, H. W., and Lenhart, J. J. (2006c). Ultrasonic control of ceramic membrane fouling caused by natural organic matter and silica particles. Journal of Membrane Science, 276(1–2), 135–144.CrossRefGoogle Scholar
  17. Choi, H. B. (2003). Process for treatment of livestock wastewater using Gas Stripper Disintegrator (GSD), Bio-Ceramic System SBR (BCS/SBR) and Vibratory Shear Enhanced Processing (VSEP) Membrane Filters. Korean Patent No. 2003016721.Google Scholar
  18. Cui, Z. F., and Wright, K. I. T. (1994). Gas-liquid two-phase cross-flow ultrafiltration of BSA and dextran solutions. Journal of Membrane Science, 90(1–2), 183–189.CrossRefGoogle Scholar
  19. De Boer, R., De Wit, J. N., and Hiddink, J. (1977). Processing of whey by means of membranes and some applications of whey protein concentrate. Journal of the Society of Dairy Technology, 30(2), 112–120.CrossRefGoogle Scholar
  20. De Boer, R., and Hiddink, J. (1980). Membrane processes in the dairy industry: State of the art. Desalination, 35, 169–192.CrossRefGoogle Scholar
  21. Drioli, E., and De Bartolo, L. (2006). Membrane bioreactor for cell tissues and organoids. Artificial Organs, 30(10), 793–802.CrossRefGoogle Scholar
  22. Duriyabunleng, H., Petmunee, J., and Muangnapoh, C. (2001). Effects of the ultrasonic waves on microfiltration in plate and frame module. Journal of Chemical Engineering of Japan, 34(8), 985–989.CrossRefGoogle Scholar
  23. Feng, D., van Deventer, J. S. J., and Aldrich, C. (2006). Ultrasonic defouling of reverse osmosis membranes used to treat wastewater effluents. Separation and Purification Technology, 50(3), 318–323.CrossRefGoogle Scholar
  24. Finnigan, S. M., and Howell, J. A. (1989). The effect of pulsatile flow on ultrafiltration fluxes in a baffled tubular membrane system. Chemical Engineering Research and Design, 67(3), 278–282.Google Scholar
  25. Frappart, M., Akoum, O., Ding, L. H., and Jaffrin, M. Y. (2006). Treatment of dairy process waters modelled by diluted milk using dynamic nanofiltration with a rotating disk module. Journal of Membrane Science, 282(1+2), 465–472.CrossRefGoogle Scholar
  26. Gan, Q., Howell, J. A., Field, R. W., England, R., Bird, M. R., and McKechinie, M. T. (1999). Synergetic cleaning procedure for a ceramic membrane fouled by beer microfiltration. Journal of Membrane Science, 155(2), 277–289.CrossRefGoogle Scholar
  27. Hacias, K. J., Cormier, G. J., Nourie, S. M., and Kubel, E. J. (1997). Guide to Acid, Alkaline, Emulsion, and Ultrasonic Cleaning. ASM International, Ohio, USA.Google Scholar
  28. Hagenson, L. C., and Doraiswamy, L. K. (1997). Comparison of the effects of ultrasound and mechanical agitation on a reacting solid-liquid system. Chemical Engineering Science, 53(1), 131–148.CrossRefGoogle Scholar
  29. Heikkinen, J., Tuori, T., Wakeman, R. J., Juarez, J. A., Elvira, L., Rodriguez, G., Kaess, G., James, A., and Ekberg, B. (2000). Proceedings of the 8th World Filtration Congress, Brighton, UK, 767–770.Google Scholar
  30. Henglein, A. (1987). Sonochemistry: Historical developments and modern aspects. Ultrasonics, 25(1), 6–16.CrossRefGoogle Scholar
  31. Hoehn, K. (1998). Method and device for cleaning a filter membrane in a bioreactor. Hoehn, Kai, Germany. DE Patent No. 97–19703877, Germany.Google Scholar
  32. Huang, X., Chen, F., and Wen, X. (2005). Method and apparatus for on-line ultrasonic cavitation cleaning of membrane bioreactor. Patent Application: CN 1621359, Tsinghua University, People’s Republic of China.Google Scholar
  33. New Logic International. Is membrane fouling a thing of the past? (2001). Filtration and Separation, 38(1), 20–21.Google Scholar
  34. Jaffrin, M. Y., Ding, L. -H., Akoum, O., and Brou, A. (2004). A hydrodynamic comparison between rotating disk and vibratory dynamic filtration systems. Journal of Membrane Science, 242(1–2), 155–167.CrossRefGoogle Scholar
  35. Joscelyne, S. M., and Tragardh, G. (2000). Membrane emulsification – a literature review. Journal of Membrane Science, 169(1), 107–117.CrossRefGoogle Scholar
  36. Juang, R. -S., and Lin, K. -H. (2004). Flux recovery in the ultrafiltration of suspended solutions with ultrasound. Journal of Membrane Science, 243(1–2), 115–124.CrossRefGoogle Scholar
  37. Kahler, B. (2004). Procedure and plant for wastewater disinfection by ultrasound. Patent No. DE 10252544, Kahler, Papst and Schmidt Patentverwertungs GESBR, Austria.Google Scholar
  38. Kawai, Y., Yasunaga, N., and Furukawa, S. (2006). Membrane filtration apparatus. Patent No. JP 2006007179, Mitsubishi Electric Corporation, Japan.Google Scholar
  39. Klein, E. (2000). Affinity membranes: A 10-year review. Journal of Membrane Science, 179(1–2), 1–27.CrossRefGoogle Scholar
  40. Kobayashi, T., Chai, X., and Fujii, N. (1999). Ultrasound enhanced cross-flow membrane filtration. Separation and Purification Technology, 17(1), 31–40.CrossRefGoogle Scholar
  41. Kobayashi, T., and Hosaka, Y. (2003). Enhanced membrane treatment for hollow-fiber microfiltration in ultrasonic reflection field. Japanese Journal of Applied Physics, Part 1: Regular Papers, Short Notes and Review Papers, 42(5B), 2954–2955.Google Scholar
  42. Kobayashi, T., Kobayashi, T., Hosaka, Y., and Fujii, N. (2003). Ultrasound-enhanced membrane-cleaning processes applied water treatments: Influence of sonic frequency on filtration treatments. Ultrasonics, 41(3), 185–190.CrossRefGoogle Scholar
  43. Kokugan, T., Kaseno, Fujiwara, S., and Shimizu, M. (1995). Ultrasonic effect on ultrafiltration properties of ceramic membrane. Maku, 20(3), 213–23.Google Scholar
  44. Kost, J., and Langer, R. S. (1988). Ultrasound enhancement of membrane permeability. U.S. Patent No. 4780212, Massachusetts Institute of Technology, USA, 7.Google Scholar
  45. Krstic, D. M., Markov, S. L., and Tekic, M. N. (2001). Membrane fouling during cross-flow microfiltration of Polyporus squamosus fermentation broth. Biochemical Engineering Journal, 9(2), 103–109.CrossRefGoogle Scholar
  46. Kylloenen, H., Pirkonen, P., Nystroem, M., Nuortila-Jokinen, J., and Groenroos, A. (2006). Experimental aspects of ultrasonically enhanced cross-flow membrane filtration of industrial wastewater. Ultrasonics Sonochemistry, 13(4), 295–302.CrossRefGoogle Scholar
  47. Kylloenen, H. M., Pirkonen, P., and Nystrom, M. (2005). Membrane filtration enhanced by ultrasound: A review. Desalination, 181(1–3), 319–335.CrossRefGoogle Scholar
  48. Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2004). Mechanisms and factors influencing the ultrasonic cleaning of particle-fouled ceramic membranes. Journal of Membrane Science, 237(1–2), 213–223.CrossRefGoogle Scholar
  49. Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2006a). Effect of fouling conditions and cake layer structure on the ultrasonic cleaning of ceramic membranes. Separation Science and Technology, 41(16), 3569–3584.CrossRefGoogle Scholar
  50. Lamminen, M. O., Walker, H. W., and Weavers, L. K. (2006b). Cleaning of particle-fouled membranes during cross-flow filtration using an embedded ultrasonic transducer system. Journal of Membrane Science, 283(1+2), 225–232.CrossRefGoogle Scholar
  51. Latt, K. K., Kobayashi, T., and Kobayashi, T. (2004). Effect of ultrasound on membrane cleaning processes for enhancement of its permeability. Transactions of the Materials Research Society of Japan, 29(7), 3303–3306.Google Scholar
  52. Le Berre, O., and Daufin, G. (1994). Fouling and Selectivity of Membranes during Separation of β-casein. Journal of Membrane Science, 88, 263–270.CrossRefGoogle Scholar
  53. Le Berre, O., and Daufin, G. (1996). Skim milk crossflow microfiltration performance versus permeation flux to wall shear stress ratio. Journal of Membrane Science, 117(1–2), 261–270.CrossRefGoogle Scholar
  54. Le Berre, O., and Daufin, G (1998). Microfiltration (0.1 μm) of milk: Effect of protein size and charge. Journal of Dairy Research, 65(3), 443–455.CrossRefGoogle Scholar
  55. Leighton, T. G. (1994). The acoustic bubble. San Diego, CA, Academic.Google Scholar
  56. Li, J., Sanderson, R. D., and Jacobs, E. P. (2002). Ultrasonic cleaning of nylon microfiltration membranes fouled by Kraft paper mill effluent. Journal of Membrane Science, 205(1–2), 247–257.CrossRefGoogle Scholar
  57. Lorimer, J. P., and Mason, T. J. (1987). Sonochemistry Part 1. The physical aspects. Chemical Society Reviews, 16(2), 239–274.CrossRefGoogle Scholar
  58. Masselin, I., Chasseray, X., Durand-Bourlier, L., Laine, J. M., Syzaret, P. Y., and Lemordant, D. (2001). Effect of sonication on polymeric membranes. Journal of Membrane Science, 181(2), 213–220.CrossRefGoogle Scholar
  59. Matsumoto, Y., Miwa, T., Nakao, S. -I., and Kimura, S. (1996). Improvement of membrane permeation performance by ultrasonic microfiltration. Journal of Chemical Engineering of Japan, 29(4), 561–567.CrossRefGoogle Scholar
  60. Muthukumaran, S., Kentish, S. E., Ashokkumar, M., and Stevens, G. W. (2005a). Mechanisms for the ultrasonic enhancement of dairy whey ultrafiltration. Journal of Membrane Science, 258(1–2), 106–114.CrossRefGoogle Scholar
  61. Muthukumaran, S., Kentish, S., Lalchandani, S., Ashokkumar, M., Mawson, R., Stevens, G. W. and Grieser, F. (2005b). The optimisation of ultrasonic cleaning procedures for dairy fouled ultrafiltration membranes. Ultrasonics Sonochemistry, 12(1–2), 29–35.CrossRefGoogle Scholar
  62. Muthukumaran, S., Kentish, S. E., Stevens, G. W., Ashokkumar, M., and Mawson, R. (2007). The application of ultrasound to dairy ultrafiltration: The influence of operating conditions. Journal of Food Engineering, 81(2), 364–373.CrossRefGoogle Scholar
  63. Muthukumaran, S., Yang, K., Seuren, A., Kentish, S., Ashokkumar, M., Stevens, G. W., and Grieser, F. (2004). The use of ultrasonic cleaning for ultrafiltration membranes in the dairy industry. Separation and Purification Technology, 39(1–2), 99–107.CrossRefGoogle Scholar
  64. Narayan, A. V., Nagaraj, N., Hebbar, H. U., Chakkaravarthi, A., Raghavarao, K. S. M. S., and Nene, S. (2002). Acoustic field-assisted osmotic membrane distillation. Desalination, 147(1–3), 149–156.CrossRefGoogle Scholar
  65. New Logic Research (2007). http://www.vsep.com/index.html Accessed on April 24, 2007.
  66. Noble, R. D., and Stern, S. A. (eds.) (1995). Membrane separations technology: Principles and applications. New York, NY, Elsevier.Google Scholar
  67. Petala, M. D., and Zouboulis, A. I. (2006). Vibratory shear enhanced processing membrane filtration applied for the removal of natural organic matter from surface waters. Journal of Membrane Science, 269(1–2), 1–14.CrossRefGoogle Scholar
  68. Prazeres, D. M. F., and Cabral, J. M. S. (1994). Enzymatic membrane bioreactors and their applications. Enzyme and Microbial Technology, 16(9), 738–750.CrossRefGoogle Scholar
  69. Renner, E. (1984). Protein analysis of dairy products produced by ultrafiltration. Special Publication – Royal Society of Chemistry, 49, 201–205.Google Scholar
  70. Rios, G. M., Belleville, M. P., Paolucci, D., and Sanchez, J. (2004). Progress in enzymatic membrane reactors – a review. Journal of Membrane Science, 242(1–2), 189–196.CrossRefGoogle Scholar
  71. Rodrigues, R. B., Menezes, H. C., Cabral, L. M. C., Dornier, M., Rios, G. M., and Reynes, M. (2004). Evaluation of reverse osmosis and osmotic evaporation to concentrate camu-camu juice (Myrciaria dubia). Journal of Food Engineering, 63(1), 97–102.CrossRefGoogle Scholar
  72. Simon, A., Gondrexon, N., Taha, S., Cabon, J., and Dorange, G. (2000). Low-frequency ultrasound to improve dead-end ultrafiltration performance. Separation Science and Technology, 35(16), 2619–2637.CrossRefGoogle Scholar
  73. Sivakumar, M., and Pandit, A. B. (2001). Ultrasound enhanced degradation of Rhodamine B: Optimization with power density. Ultrason Sonochem FIELD; Ultrasonics Sonochemistry, 8(3), 233–240.Google Scholar
  74. Suslick, K. S. (1988). Ultrasound; Its chemical physical and biological effects. New York, NY, VCH.Google Scholar
  75. Tarleton, E. S., and Wakeman, R. J. (1990). Microfiltration enhancement by electrical and ultrasonic force fields. Filtration+Separation, 27(3), 192–194.Google Scholar
  76. Tarleton, E. S., and Wakeman, R. J. (1992). Electro-acoustic crossflow microfiltration. Filtration+Separation, 29(5), 425–432.Google Scholar
  77. Teng, M. -Y., Lin, S. -H., and Juang, R. -S. (2006a). Effect of ultrasound on the separation of binary protein mixtures by cross-flow ultrafiltration. Desalination, 200(1–3), 280–282.CrossRefGoogle Scholar
  78. Teng, M. -Y., Lin, S. -H., Wu, C. -Y., and Juang, R. -S. (2006b). Factors affecting selective rejection of proteins within a binary mixture during cross-flow ultrafiltration. Journal of Membrane Science, 281(1+2), 103–110.CrossRefGoogle Scholar
  79. Thompson, L. H., and Doraiswamy, L. K. (1999). Sonochemistry: Science and Engineering. Industrial and Engineering Chemistry Research, 38(4), 1215–1249.CrossRefGoogle Scholar
  80. Vaillant, F., Cisse, M., Chaverri, M., Perez, A., Dornier, M., Viquez, F., and Dhuique-Mayer, C. (2005). Clarification and concentration of melon juice using membrane processes. Innovative Food Science and Emerging Technologies, 6(2), 213–220.CrossRefGoogle Scholar
  81. Villamiel, M., and De Jong, P. (2000). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48(7), 3068.CrossRefGoogle Scholar
  82. Wakeman, R. J., and Tarleton, E. S. (1991). An experimental study of electroacoustic crossflow microfiltration. Chemical Engineering Research and Design, 69(A5), 386–397.Google Scholar
  83. Wang, X. -L., Li, X. -F, Fu, X. -Q., Chen, R., and Gao, B. (2005). Effect of ultrasound irradiation on polymeric microfiltration membranes. Desalination, 175(2), 187–196.CrossRefGoogle Scholar
  84. Weavers, L. K., Walker, H. W., Lamminen, M. O., and Chen, D. (2006). Ultrasonically cleaned membrane filtration system. US Patent No. 7008540, Ohio State University, USA.Google Scholar
  85. Yuk, Y. J., and Youm, K. H. (2003). Enhancement of ultrafiltration performance using ultrasound. Memburein, 13(4), 283–290.Google Scholar
  86. Zhu, C., and Liu, G. (2000). Modeling of ultrasonic enhancement on membrane distillation. Journal of Membrane Science, 176(1), 31–41.CrossRefGoogle Scholar
  87. Zou, H. F., Luo, Q. Z., and Zhou, D. M. (2001). Affinity membrane chromatography for the analysis and purification of proteins. Journal of Biochemical and Biophysical Methods, 49(1–3), 199–240.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Chemical and Biomolecular Engineering, Particulate Fluids Processing CentreUniversity of MelbourneMelbourneAustralia
  2. 2.School of Chemistry, University of MelbourneMelbourneAustralia

Personalised recommendations