Skip to main content

Ultrasound in Enzyme Activation and Inactivation

  • Chapter
  • First Online:

Part of the book series: Food Engineering Series ((FSES))

Abstract

As discussed in previous chapters, most effects due to ultrasound arise from cavitation events, in particular, collapsing cavitation bubbles. These collapsing bubbles generate very high localized temperatures and pressure shockwaves along with micro-streaming that is associated with high shear forces. These effects can be used to accelerate the transport of substrates and reaction products to and from enzymes, and to enhance mass transfer in enzyme reactor systems, and thus improve efficiency. However, the high velocity streaming, together with the formation of hydroxy radicals and heat generation during collapsing of bubbles, may also potentially affect the biocatalyst stability, and this can be a limiting factor in combined ultrasound/enzymatic applications. Typically, enzymes can be readily denatured by slight changes in environmental conditions, including temperature, pressure, shear stress, pH and ionic strength.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agrawal, P. B., and Pandit, A. B. (2003). Isolation of alpha-glucosidase from Saccharomyces cerevisiae: Cell disruption and adsorption. Biochemical Engineering Journal, 15, 37–45.

    Article  CAS  Google Scholar 

  • Aliyu, M., and Hepher, M. J. (2000). Effects of ultrasound energy on degradation of cellulose material. Ultrasonics Sonochemistry, 7, 265–268.

    Article  CAS  Google Scholar 

  • Antonenko, Y. N., and Pohl, P. (1995). Steady-state nonmonotonic concentration profiles in the unstirred layers of bilayer-lipid membranes. Biochimica et Biophysica Acta-Biomembranes, 1235, 57–61.

    Article  Google Scholar 

  • Apar, D. K., Turhan, M., and Ozbek, B. (2006). Enzymatic hydrolysis of starch by using a sonifier. Chemical Engineering Communications, 193, 1117–1126.

    Article  CAS  Google Scholar 

  • Ashokkumar, M., Sunartio, D., Kentish, S., Mawson, R., Simons, L., Vilkhu, K., and Versteeg, C. (2008). Modification of food ingredients by ultrasound to improve functionality: A preliminary study on a model system. Innovative Food Science and Emerging Technologies, 9, 155–160.

    Article  CAS  Google Scholar 

  • Avivi, S., and Gedanken, A. (2002). S-S bonds are not required for the sonochemical formation proteinaceous microspheres: The case of streptavidin. Biochemical Journal, 366, 705–707.

    CAS  Google Scholar 

  • Avivi, S., and Gedanken, A. (2005). The preparation of avidin microspheres using the sonochemical method and the interaction of the microspheres with biotin. Ultrasonics Sonochemistry, 12, 405–409.

    Article  CAS  Google Scholar 

  • Barteri, M., Diociaiuti, M., Pala, A., and Rotella, S. (2004). Low frequency ultrasound induces aggregation of porcine furnarase by free radicals production. Biophysical Chemistry, 111, 35–42.

    Article  CAS  Google Scholar 

  • Barton, S., Bullock, C., and Weir, D. (1996). The effects of ultrasound on the activities of some glycosidase enzymes of industrial importance. Enzyme and Microbial Technology, 18, 190–194.

    Article  CAS  Google Scholar 

  • Basto, C., Silva, C. J., Gubitz, G., and Cavaco-Paulo, A. (2007a). Stability and decolourization ability of Trametes villosa laccase in liquid ultrasonic fields. Ultrasonics Sonochemistry, 14, 355–362.

    Article  CAS  Google Scholar 

  • Basto, C., Tzanov, T., and Cavaco-Paulo, A. (2007b). Combined ultrasound-laccase assisted bleaching of cotton. Ultrasonics Sonochemistry, 14, 350–354.

    Article  CAS  Google Scholar 

  • Bengtsson, M., and Laurell, T. (2004). Ultrasonic agitation in microchannels. Analytical and Bioanalytical Chemistry, 378, 1716–1721.

    Article  CAS  Google Scholar 

  • Berliner, S. (1984). Application of ultrasonic processors. International Biotechnology Laboratory, 2, 42–49.

    Google Scholar 

  • Bracey, E., Stenning, R. A., and Brooker, B. E. (1998). Relating the microstructure of enzyme dispersions in organic solvents to their kinetic behavior. Enzyme and Microbial Technology, 22, 147–151.

    Article  CAS  Google Scholar 

  • Cadoret, A., Conrad, A., and Block, J. C. (2002). Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme and Microbial Technology, 31, 179–186.

    Article  CAS  Google Scholar 

  • Colombie, S., Gaunand, A., and Lindet, B. (2001). Lysozyme inactivation under mechanical stirring: Effect of physical and molecular interfaces. Enzyme and Microbial Technology, 28, 820–826.

    Article  CAS  Google Scholar 

  • Cruz, R. M. S., Vieira, M. C., and Silva, C. L. M. (2006). Effect of heat and thermosonication treatments on peroxidase inactivation kinetics in watercress (Nasturtium officinale). Journal of Food Engineering, 72, 8–15.

    Article  CAS  Google Scholar 

  • De Gennaro, L., Cavella, S., Romano, R., and Masi, P. (1999). The use of ultrasound in food technology I: Inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401–407.

    Article  Google Scholar 

  • Durrschmid, M. P., Landauer, K., Simic, G., Klug, H., Keijzer, T., Trampler, F., Oudshoorn, A., Groschl, M., Muller, D., and Doblhoff-Dier, O. (2003). Comparison of fluidized bed and ultrasonic cell-retention systems for high cell density mammalian cell culture. Biotechnology Progress, 19, 1045–1048.

    Article  CAS  Google Scholar 

  • Entezari, M. H., and Petrier, C. (2004). A combination of ultrasound and oxidative enzyme: Sono-biodegradation of phenol. Applied Catalysis B-Environmental, 53, 257–263.

    Article  CAS  Google Scholar 

  • Entezari, M. H., and Petrier, C. (2005). A combination of ultrasound and oxidative enzyme: Sono-enzyme degradation of phenols in a mixture. Ultrasonics Sonochemistry, 12, 283–288.

    Article  CAS  Google Scholar 

  • Entezari, M. H., Mostafai, M., and Sarafraz-yazdi, A. (2006). A combination of ultrasound and a bio-catalyst: Removal of 2-chlorophenol from aqueous solution. Ultrasonics Sonochemistry, 13, 37–41.

    Article  CAS  Google Scholar 

  • Ertugay, M. F., Yuksel, Y., and Sengul, M. (2003). The effect of ultrasound on lactoperoxidase and alkaline phosphatase enzymes from milk. Milchwissenschaft-Milk Science International, 58, 593–595.

    Google Scholar 

  • Farkade, V. D., Harrison, S. T. L., and Pandit, A. B. (2006). Improved cavitational cell disruption following pH pretreatment for the extraction of beta-galactosidase from Kluveromyces lactis. Biochemical Engineering Journal, 31, 25–30.

    Article  CAS  Google Scholar 

  • Feliu, J. X., Cubarsi, R., and Villaverde, A. (1998). Optimized release of recombinant proteins by ultrasonication of E. coli cells. Biotechnology and Bioengineering, 58, 536–540.

    Article  CAS  Google Scholar 

  • Floros, J. D., and Liang, H. H. (1994). Acoustically assisted diffusion through membranes and biomaterials. Food Technology, 48, 79–84.

    Google Scholar 

  • Francis, C. W., Blinc, A., Lee, S., and Cox, C. (1995). Ultrasound accelerates transport of recombinant tissue-plasminogen activator into clots. Ultrasound in Medicine and Biology, 21, 419–424.

    Article  CAS  Google Scholar 

  • Froment, M. T., Lockridge, O., and Masson, P. (1998a). Resistance of butyrylcholinesterase to inactivation by ultrasound: Effects of ultrasound on catalytic activity and subunit association. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387, 53–64.

    Article  CAS  Google Scholar 

  • Froment, M. T., Lockridge, O., and Masson, P. (1998b). Resistance of butyrylcholinesterase to inactivation by ultrasound: Effects of ultrasound on catalytic activity and subunit association 143. Biochimica et Biophysica Acta-Protein Structure and Molecular Enzymology, 1387, 53–64.

    Article  CAS  Google Scholar 

  • Gama, F. M., Carvalho, M. G., Figueiredo, M. M., and Mota, M. (1997). Comparative study of cellulose fragmentation by enzymes and ultrasound. Enzyme and Microbial Technology, 20, 12–17.

    Article  CAS  Google Scholar 

  • Gebicka, L., and Gebicki, J. L. (1997a). The effect of ultrasound on heme enzymes in aqueous solution. Journal of Enzyme Inhibition, 12, 133–141.

    Article  CAS  Google Scholar 

  • Gebicka, L., and Gebicki, J. L. (1997b). The effect of ultrasound on heme enzymes in aqueous solution 152. Journal of Enzyme Inhibition, 12, 133–141.

    Article  CAS  Google Scholar 

  • Grintsevich, E. E., and Metelitsa, D. I. (2002). Kinetics of ultrasonic inactivation of peroxidase in aqueous solutions. Russian Journal of Physical Chemistry, 76, 1368–(1373).

    Google Scholar 

  • Grintsevich, E. E., Adzerikho, I. E., Mrochek, A. G., and Metelitza, D. I. (2001). Polydisulfides of substituted phenols as effective protectors of peroxidase against inactivation by ultrasonic cavitation. Biochemistry-Moscow, 66, 740–746.

    Article  CAS  Google Scholar 

  • Guzey, D., Gulseren, I., Bruce, B., and Weiss, J. (2006). Interfacial properties and structural conformation of thermosonicated bovine serum albumin. Food Hydrocolloids, 20, 669–677.

    Article  CAS  Google Scholar 

  • Imai, M., Ikari, K., and Suzuki, I. (2004). High-performance hydrolysis of cellulose using mixed cellulase species and ultrasonication pretreatment. Biochemical Engineering Journal, 17, 79–83.

    Article  CAS  Google Scholar 

  • Jaspe, A., and Sanjose, C. (1999). Extracellular enzyme production by Pseudomonas fluorescens in homogenized cold milk. Milchwissenschaft-Milk Science International, 54, 493–495.

    CAS  Google Scholar 

  • Jiang, B., and Xiang, M. (1992). Immobilization of enzymes on polymers modified by ultrasonic irradiation. European Polymer Journal, 28, 827–830.

    Article  CAS  Google Scholar 

  • Jie, M. S. F. L., and Syedrahmatullah, M. S. K. (1995). Enzymatic-hydrolysis of long-chain N-heterocyclic fatty esters. Lipids, 30, 995–999.

    Article  Google Scholar 

  • Johnson C. P., Tang, H.-Y., Carag, C., Speicher, D. W., and Discher, D. E. (2007). Forced unfolding of proteins within cells. Science, 317, 663–666.

    Article  CAS  Google Scholar 

  • Kagiya, G., Ogawa, R., Tabuchi, Y., Feril, L. B., Nozaki, T., Fukuda, S., Yamamoto, K., and Kondo, T. (2006). Expression of heme oxygenase-1 due to intracellular reactive oxygen species induced by ultrasound. Ultrasonics Sonochemistry, 13, 388–396.

    Article  CAS  Google Scholar 

  • Karaseva, E., and Metelitza, D. I. (2006). Stabilization of glucoso-6-phosphate dehydrogenase by its substrate and cofactor in an ultrasonic field. Russian Journal of Bioorganic Chemistry, 32, 436–443.

    Article  CAS  Google Scholar 

  • Kost, J. (1993). Ultrasound induced delivery of peptides. Journal of Controlled Release, 24, 247–255.

    Article  CAS  Google Scholar 

  • Kotronarou, A., and Hoffmann, M. R. (1995). The chemical effects of collapsing cavitation bubbles – mathematical-modeling. Aquatic Chemistry, 244, 233–251.

    Article  CAS  Google Scholar 

  • Kovganko, N. V., Kashkan, Z. N., Krivenok, S. N., Potapovich, M. V., Eremin, A. N., and Metelitsa, D. I. (2004). Bioactive compounds in the Flora of Belarus. 2. Astragalin, an effective protector of catalase from ultrasonic inactivation in aqueous solutions. Chemistry of Natural Compounds, 40, 71–74.

    Article  CAS  Google Scholar 

  • Li, C. Z., Yoshimoto, M., Ogata, H., Tsukuda, N., Fukunaga, K., and Nakao, K. (2005). Effects of ultrasonic intensity and reactor scale on kinetics of enzymatic saccharification of various waste papers in continuously irradiated stirred tanks. Ultrasonics Sonochemistry, 12, 373–384.

    Article  CAS  Google Scholar 

  • Li, R., Ziola, B., and King, J. (2000). Purification and characterization of formate dehydrogenase from Arabidopsis thaliana. Journal of Plant Physiology, 157, 161–167.

    CAS  Google Scholar 

  • Lin, L. D., and Wu, J. Y. (2002). Enhancement of shikonin production in single- and two-phase suspension cultures of Lithospermum erythrorhizon cells using low-energy ultrasound. Biotechnology and Bioengineering, 78, 81–88.

    Article  CAS  Google Scholar 

  • Lin, G. L., Liu, H. C., and Liu, S. H. (1995). Azeotropic distillation- and ultrasound-promoted lipase-catalyzed reactions. Journal of the Chinese Chemical Society, 42, 957–961.

    CAS  Google Scholar 

  • Liu, H. L., Chen, W. J., and Chou, S. N. (2003a). Mechanisms of aggregation of alpha- and beta-amylases in aqueous dispersions. Colloids and Surfaces B-Biointerfaces, 28, 215–225.

    Article  CAS  Google Scholar 

  • Liu, Y. Y., Yoshikoshi, A., Wang, B. C., and Sakanishi, A. (2003b). Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus cells. Colloids and Surfaces B-Biointerfaces, 27, 287–293.

    Article  CAS  Google Scholar 

  • Lopez, P., and Burgos, J. (1995a). Peroxidase stability and reactivation after heat-treatment and manothermosonication. Journal of Food Science, 60, 451–455.

    Article  CAS  Google Scholar 

  • Lopez, P., and Burgos, J. (1995b). Lipoxygenase inactivation by manothermosonication – effects of sonication physical parameters, Ph, Kcl, sugars, glycerol, and enzyme concentration. Journal of Agricultural and Food Chemistry, 43, 620–625.

    Article  CAS  Google Scholar 

  • Lopez, P., Vercet, A., Sanchez, A. C., and Burgos, J. (1998). Inactivation of tomato pectic enzymes by manothermosonication. Zeitschrift fur Lebensmittel-Untersuchung Und-Forschung A-Food Research and Technology, 207, 249–252.

    Article  CAS  Google Scholar 

  • Lopez, P., Sala, F. J., Delafuente, J. L., Condon, S., Raso, J., and Burgos, J. (1994). Inactivation of peroxidase, lipoxygenase, and polyphenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42, 252–256.

    Article  CAS  Google Scholar 

  • Mahinpour, R., and Sarbolouki, M. N. (1998). Enhancing enzymatic hydrolysis of cellulose by ultrasonic pretreatment. Iranian Journal of Chemistry and Chemical Engineering-International English Edition, 17, 8–13.

    CAS  Google Scholar 

  • Manas, P., Munoz, B., Sanz, D., and Condon, S. (2006). Inactivation of lysozyme by ultrasonic waves under pressure at different temperatures. Enzyme and Microbial Technology, 39, 1177–1182.

    Article  CAS  Google Scholar 

  • Martin, D., and Schlimme, E. (2002). Influence of technological measures on the activity behaviour of the milk enzyme adenosine deaminase (ADA, EC 3.5.4.4). Kieler Milchwirtschaftliche Forschungsberichte, 54, 305–315.

    CAS  Google Scholar 

  • Miller, D. L., and Thomas, R. M. (1994). Cavitation dosimetry – estimates for single bubbles in a rotating-tube exposure system. Ultrasound in Medicine and Biology, 20, 187–193.

    Article  CAS  Google Scholar 

  • Nikolaev, A. L., Chicherin, D. S., Sinani, V. A., Noa, O. V., Melikhov, I. V., and Plate, N. A. (2001). Catalytic activity of trypsin immobilized into a polymeric thermosensitive hydrogel. Polymer Science Series A, 43, 21–25.

    Google Scholar 

  • Oulahal-Lagsir, O., Martial-Gros, A., Bonneau, M., and Blum, L. J. (2003). “Escherichia coli-milk” biofilm removal from stainless steel surfaces: Synergism between ultrasonic waves and enzymes. Biofouling, 19, 159–168.

    CAS  Google Scholar 

  • Ovsianko, S. L., Chernyavsky, E. A., Minchenya, V. T., Adzerikho, I. E., and Shkumatov, V. M. (2005a). Effect of ultrasound on activation of serine proteases precursors. Ultrasonics Sonochemistry, 12, 219–223.

    Article  CAS  Google Scholar 

  • Ovsianko, S. L., Chernyavsky, E. A., Minchenya, V. T., Adzerikho, I. E., and Shumatov, V. M. (2005b). Effect of ultrasound on activation of serine proteases precursors. Ultrasonics Sonochemistry, 12, 219–223.

    Article  CAS  Google Scholar 

  • Ozbek, B., Kutlu, O., and Ulgen (2000). The stability of enzymes after sonication. Process Biochemistry, 35, 1037–1043.

    Article  CAS  Google Scholar 

  • Persike, D. S., Bonfim, T. M. B., Santos, M. H. R., Lyng, S. M. O., Chiarello, M. D., and Fontana, J. D. (2002). Invertase and urease activities in the carotenogenic yeast Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma). Bioresource Technology, 82, 79–85.

    Article  CAS  Google Scholar 

  • Popa, M., Ionescu, P. C., and Vasiliuoprea, C. (1994). Mechanochemical Complexation of Micronized cellulose with Co(3+) ions by ultrasonic treatment in order to obtain macromolecular carriers for invertase immobilization. Cellulose Chemistry and Technology, 28, 129–141.

    CAS  Google Scholar 

  • Potapovich, M. V., Adzerikho, I. E., Eremin, A. N., and Metelitsa, D. I. (2003a). Kinetics of inactivation of catalase in solutions under high- and low-frequency ultrasound. Russian Journal of Physical Chemistry, 77, 299–306.

    Google Scholar 

  • Potapovich, M. V., Eremin, A. N., and Metelitza, D. I. (2003b). Kinetics of catalase inactivation induced by ultrasonic cavitation. Applied Biochemistry and Microbiology, 39, 140–146.

    Article  CAS  Google Scholar 

  • Potapovich, M. V., Eryomin, A. N., Artzukevich, I. M., Chernikevich, I. P., and Metelitza, D. I. (2001). Isolation, purification, and characterization of catalase from the methylotrophic yeast Pichia pastoris. Biochemistry-Moscow, 66, 646–657.

    Article  CAS  Google Scholar 

  • Potapovich, M. V., Eryomin, A. N., and Metelitza, D. I. (2005). Ultrasonic and thermal inactivation of catalases from bovine liver, the methylotrophic yeast Pichia pastoris, and the fungus Penicillium piceum. Applied Biochemistry and Microbiology, 41, 529–537.

    Article  CAS  Google Scholar 

  • Price, G. J., Daw, M. R., Newcombe, N. J., and Smith, P. F. (1990). Polymerization and copolymerization using high-intensity ultrasound. British Polymer Journal, 23, 63–66.

    Article  CAS  Google Scholar 

  • Racay, P., and Kollarova, M. (1996). Purification and partial characterization of Ca2+-dependent ribonucleotide reductase from Streptomyces aureofaciens. Biochemistry and Molecular Biology International, 38, 493–500.

    CAS  Google Scholar 

  • Rachinskaya, Z. V., Karasyova, E. I., and Metelitza, D. I. (2004). Inactivation of glucose-6-phosphate dehydrogenase in solution by low- and high-frequency ultrasound. Applied Biochemistry and Microbiology, 40, 120–128.

    Article  CAS  Google Scholar 

  • Ramachandran, K., Al-Zuhair, S., Fong, C. S., and Gak, C. (2006). Kinetic study on hydrolysis of oils by lipase with ultrasonic emulsification. Biochemical Engineering Journal, 32, 19–24.

    Article  CAS  Google Scholar 

  • Raso, J., Manas, P., Pagan, R., and Sala, F. J. (1999). Influence of different factors on the output power transferred into medium by ultrasound. Ultrasonics Sonochemistry, 5, 157–162.

    Article  CAS  Google Scholar 

  • Raviyan, P., Zhang, Z., and Feng, H. (2005). Ultrasonication for tomato pectinmethylesterase inactivation: Effect of cavitation intensity and temperature on inactivation. Journal of Food Engineering, 70, 189–196.

    Article  Google Scholar 

  • Rief, M., Gautel, F., Oesterhelt, F., Fernandez, J. M., and Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by atomic force microscopy. Science, 276, 1109–1112.

    Article  CAS  Google Scholar 

  • Riesz, P., and Kondo, T. (1992). Free-radical formation induced by ultrasound and its biological implications. Free Radical Biology and Medicine, 13, 247–270.

    Article  CAS  Google Scholar 

  • Roncales, P., Cena, P., Beltran, J. A., and Jaime, I. (1993). Ultrasonication of lamb skeletal-muscle fibers enhances postmortem proteolysis. Zeitschrift fur Lebensmittel-Untersuchung Und-Forschung, 196, 339–342.

    Article  CAS  Google Scholar 

  • Rosenthal, I., Sostaric, J. Z., and Riesz, P. (2004). Sonodynamic therapy – a review of the synergistic effects of drugs and ultrasound. Ultrasonics Sonochemistry, 11, 349–363.

    CAS  Google Scholar 

  • Sakakibara, M., Wang, D., Takahashi, R., Takahashi, K., and Mori, S. (1996). Influence of ultrasound irradiation on hydrolysis of sucrose catalyzed by invertase. Enzyme and Microbial Technology, 18, 444–448.

    Article  CAS  Google Scholar 

  • Sala, F. J., Burgos, J., Condon, S., Lopez-Buesa, P., and Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In: Gold, G. (ed.), New methods of food preservation, pp. 167–204. Glascow, Blackie.

    Google Scholar 

  • Santamaria, L., Castelani, A., and Levi, F. A. (1952). Haluronidase inactivation by ultrasonic waves and its mechanism. Enzymologia, 15, 285–294.

    CAS  Google Scholar 

  • Schmidt, P., Rosenfeld, E., Millner, R., Czerner, R., and Schellenberger, A. (1987). Theoretical and experimental studies on the influence of ultrasound on immobilized enzymes. Biotechnology and Bioengineering, 30, 928–935.

    Article  CAS  Google Scholar 

  • Sener, N., Apar, D. K., and Ozbek, B. (2006). A modelling study on milk lactose hydrolysis and beta-galactosidase stability under sonication. Process Biochemistry, 41, 1493–(1500).

    Article  CAS  Google Scholar 

  • Sinisterra, J. V. (1992). Application of ultrasound to biotechnology – An overview. Ultrasonics, 30, 180–185.

    Article  CAS  Google Scholar 

  • Siwek, M., Noubar, A. B., Bergmann, J., Niemeyer, B., and Galunsky, B. (2006). Enhancement of enzymatic digestion of Antarctic krill and successive extraction of selenium organic compounds by ultrasound treatment. Analytical and Bioanalytical Chemistry, 384, 244–249.

    Article  CAS  Google Scholar 

  • Snir, R., Koehler, P. E., Sims, K. A., and Wicker, L. (1995). Ph and cations influence permeability of marsh grapefruit pectinesterase on polysulfone ultrafiltration membrane. Journal of Agricultural and Food Chemistry, 43, 1157–1162.

    Article  CAS  Google Scholar 

  • Sotomayor, M., and Schulten, K. (2007). A single-molecule experiments in vitro and silico. Science, 316, 1144–1148.

    Article  CAS  Google Scholar 

  • Suslick, K. S. (1988). Only the smile is left. Nature, 334, 375–376.

    Article  Google Scholar 

  • Suslick, K. S., and Grinstaff, M. W. (1990). Protein microencapsulation of nonaqueous liquids. Journal of the American Chemical Society, 112, 7807–7809.

    Article  CAS  Google Scholar 

  • Tarun, E. I., Adzerikho, I. E., and Metelitsa, D. I. (2003). Inactivation of urease under the action of ultrasonically induced cavitation. Russian Journal of Physical Chemistry, 77, 468–476.

    Google Scholar 

  • Tarun, E. I., Kurchenko, V. P., and Metelitza, D. I. (2006). Flavonoids as effective protectors of urease from ultrasonic inactivation in solutions. Russian Journal of Bioorganic Chemistry, 32, 352–359.

    Article  CAS  Google Scholar 

  • Tauber, M. M., Guebitz, G. M., and Rehorek, A. (2005). Degradation of azo dyes by laccase and ultrasound treatment. Applied and Environmental Microbiology, 71, 2600–2607.

    Article  CAS  Google Scholar 

  • Thakur, B. R., and Nelson, P. E. (1997). Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation. Nahrung-Food, 41, 299–301.

    Article  CAS  Google Scholar 

  • Tian, Z. M., Kang, J. Q., Wang, S. P., and Wan, M. X. (2004). Effect of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry, 11, 399–404.

    CAS  Google Scholar 

  • Tsaih, M. L., Tseng, L. Z., and Chen, R. H. (2004). Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polymer Degradation and Stability, 86, 25–32.

    Article  CAS  Google Scholar 

  • vanWyk, J. P. H. (1997). Cellulose hydrolysis and cellulase adsorption after pretreatment of cellulose materials. Biotechnology Techniques, 11, 443–445.

    Article  CAS  Google Scholar 

  • Vargas, L. H. M., Piao, A. C. S., Domingos, R. N., and Carmona, E. C. (2004). Ultrasound effects on invertase from Aspergillus niger. World Journal of Microbiology and Biotechnology, 20, 137–142.

    Article  CAS  Google Scholar 

  • Vercet, A., Burgos, J., and Lopez-Buesa, P. (2002a). Manothermosonication of heat-resistant lipase and protease from Pseudomonas fluorescens: Effect of pH and sonication parameters. Journal of Dairy Research, 69, 243–254.

    Article  CAS  Google Scholar 

  • Vercet, A., Lopez, P., and Burgos, J. (1999). Inactivation of heat-resistant pectinmethylesterase from orange by manothermosonication. Journal of Agricultural and Food Chemistry, 47, 432–437.

    Article  CAS  Google Scholar 

  • Vercet, A., Lopez, P., and Burgos, J. (1998). Free radical production by manothermosonication. Ultrasonics, 36, 615–618.

    Article  CAS  Google Scholar 

  • Vercet, A., Lopez, P., and Burgos, J. (1997). Inactivation of heat-resistant lipase and protease from Pseudomonas fluorescens by manothermosonication. Journal of Dairy Science, 80, 29–36.

    Article  CAS  Google Scholar 

  • Vercet, A., Sanchez, C., Burgos, J., Montanes, L., and Buesa, P. L. (2002b). The effects of manothermosonication on tomato pectic enzymes and tomato paste rheological properties. Journal of Food Engineering, 53, 273–278.

    Article  Google Scholar 

  • Villamiel, M., and de Jong, P. (2000a). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk. Journal of Agricultural and Food Chemistry, 48, 472–478.

    Article  CAS  Google Scholar 

  • Villamiel, M., and de Jong, P. (2000b). Influence of high-intensity ultrasound and heat treatment in continuous flow on fat, proteins, and native enzymes of milk 132. Journal of Agricultural and Food Chemistry, 48, 472–478.

    Article  CAS  Google Scholar 

  • Vulfson, E. N., Sarney, D. B., and Law, B. A. (1991). Enhancement of subtilisin-catalyzed interesterification in organic-solvents by ultrasound irradiation. Enzyme and Microbial Technology, 13, 123–126.

    Article  CAS  Google Scholar 

  • Wong, M., and Suslick, K. S. (1995). Hemoglobin microbubbles. Abstracts of Papers of the American Chemical Society, 210, 587-INOR.

    Google Scholar 

  • Wood, B. E., Aldrich, H. C., and Ingram, L. O. (1997). Ultrasound stimulates ethanol production during the simultaneous saccharification and fermentation of mixed waste office paper. Biotechnology Progress, 13, 232–237.

    Article  CAS  Google Scholar 

  • Wu, J. (2007). Shear stress in cells generated by ultrasound. Progress in Biophysics and Molecular Biology, 93, 363–373.

    Article  Google Scholar 

  • Wu, J., and Lin, L. (2003). Enhancement of taxol production and release in Taxus chinensis cell cultures by ultrasound, methyl jasmonate and in situ solvent extraction. Applied Microbiology and Biotechnology, 62, 151–155.

    Article  CAS  Google Scholar 

  • Wu, J. Y., and Lin, L. D. (2002). Ultrasound-induced stress responses of Panax ginseng cells: Enzymatic browning and phenolics production. Biotechnology Progress, 18, 862–866.

    Article  CAS  Google Scholar 

  • Wu, J. Y., and Ge, X. C. (2004). Oxidative burst, jasmonic acid biosynthesis, and taxol production induced by low-energy ultrasound in Taxus chinensis cell suspension cultures. Biotechnology and Bioengineering, 85, 714–721.

    Article  CAS  Google Scholar 

  • Xiao, Y. M., Wu, Q., Cai, Y., and Lin, X. F. (2005). Ultrasound-accelerated enzymatic synthesis of sugar esters in nonaqueous solvents. Carbohydrate Research, 340, 2097–2103.

    Article  CAS  Google Scholar 

  • Xie, Y. M., Wu, H., and Lai, Y. M. (2002). Deinking of colored offset newsprint with enzyme treatment in cooperation with ultrasonic wave. Cellulose Chemistry and Technology, 36, 285–293.

    CAS  Google Scholar 

  • Yachmenev, V. G., Bertoniere, N. R., and Blanchard, E. J. (2002). Intensification of the bio-processing of cotton textiles by combined enzyme/ultrasound treatment. Journal of Chemical Technology and Biotechnology, 77, 559–567.

    Article  CAS  Google Scholar 

  • Yachmenev, V. G., Blanchard, E. J., and Lambert, A. H. (1998). Use of ultrasonic energy in the enzymatic treatment of cotton fabric. Industrial and Engineering Chemistry Research, 37, 3919–3923.

    Article  CAS  Google Scholar 

  • Yachmenev, V. G., Blanchard, E. J., and Lambert, A. H. (1999). Study of the influence of ultrasound on enzymatic treatment of cotton fabric. Textile Chemist and Colorist and American Dyestuff Reporter, 1, 47–51.

    CAS  Google Scholar 

  • Yachmenev, V. G., Blanchard, E. J., and Lambert, A. H. (2004). Use of ultrasonic energy for intensification of the bio-preparation of greige cotton. Ultrasonics, 42, 87–91.

    Article  CAS  Google Scholar 

  • Zhong, M. T., Ming, X. W., Su, P. W., and Ju, Q. K. (2004). Effects of ultrasound and additives on the function and structure of trypsin. Ultrasonics Sonochemistry, 11, 399–404.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Mawson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mawson, R., Gamage, M., Terefe, N.S., Knoerzer, K. (2011). Ultrasound in Enzyme Activation and Inactivation. In: Feng, H., Barbosa-Canovas, G., Weiss, J. (eds) Ultrasound Technologies for Food and Bioprocessing. Food Engineering Series. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7472-3_14

Download citation

Publish with us

Policies and ethics